head 1.1; access; symbols; locks; strict; comment @# @; 1.1 date 2018.03.14.15.43.09; author root; state Exp; branches; next ; desc @This document (4.1 चतुर्भुजों के मध्य बिन्दुओं के निष्कर्ष को सही सिद्ध करना) is re-created by administrator on 17 May 2017 @ 1.1 log @Initial revision @ text @{ "_id": { "$oid": "59425eb64975ac013bf0f5cd" }, "_type": "GSystem", "access_policy": "PUBLIC", "altnames": "4.1 \u091a\u0924\u0941\u0930\u094d\u092d\u0941\u091c\u094b\u0902 \u0915\u0947 \u092e\u0927\u094d\u092f \u092c\u093f\u0928\u094d\u0926\u0941\u0913\u0902 \u0915\u0947 \u0928\u093f\u0937\u094d\u0915\u0930\u094d\u0937 \u0915\u094b \u0938\u0939\u0940 \u0938\u093f\u0926\u094d\u0927 \u0915\u0930\u0928\u093e", "annotations": [], "attribute_set": [], "author_set": [ 1 ], "collection_set": [], "comment_enabled": null, "content": "
\u0915\u093e\u0930\u094d\u092f 1
\r\n\r\n\u0907\u0938 \u091a\u093f\u0924\u094d\u0930 \u092e\u0947\u0902, \u091a\u0924\u0941\u0930\u094d\u092d\u0941\u091c \u0905\u092c\u094d\u0938\u0940\u0921 \u0915\u0947 \u092e\u0927\u094d\u092f \u092c\u093f\u0928\u094d\u0926\u0941\u0913\u0902 \u0915\u094b \u092e\u093f\u0932\u093e\u0928\u0947 \u0938\u0947 \u092a\u0915\u093c\u094d\u0930\u094d\u0938 \u092c\u0928\u0924\u093e \u0939\u0948\u0964 \u0907\u0938 \u092c\u093e\u0924 \u0915\u094b \u0938\u093f\u0926\u094d\u0927 \u0915\u0930\u0947\u0902 \u0915\u093f \u092a\u0915\u093c\u094d\u0930\u094d\u0938 \u090f\u0915 \u0938\u092e\u093e\u0928\u093e\u0928\u094d\u0924\u0930 \u091a\u0924\u0941\u0930\u094d\u092d\u0941\u091c \u0939\u0948\u0964
\r\n
\r\n(\u0938\u0902\u0915\u0947\u0924: \u092e\u0927\u094d\u092f \u092c\u093f\u0928\u094d\u0926\u0941 \u092a\u094d\u0930\u092e\u0947\u092f \u0915\u0947 \u0928\u093f\u0937\u094d\u0915\u0930\u094d\u0937 \u2013 \u0915\u093f\u0938\u0940 \u0924\u094d\u0930\u093f\u092d\u0941\u091c \u0915\u0940 \u0926\u094b \u092d\u0941\u091c\u093e\u0913\u0902 \u0915\u0947 \u092e\u0927\u094d\u092f \u092c\u093f\u0928\u094d\u0926\u0941\u0913\u0902 \u0915\u094b \u092e\u093f\u0932\u093e\u0928\u0947 \u0935\u093e\u0932\u0940 \u0930\u0947\u0916\u093e, \u0924\u0940\u0938\u0930\u0940 \u092d\u0941\u091c\u093e \u0915\u0947 \u0938\u092e\u093e\u0928\u093e\u0928\u094d\u0924\u0930 \u0914\u0930 \u0909\u0938\u0915\u0940 \u0906\u0927\u0940 \u0939\u094b\u0924\u0940 \u0939\u0948 \u2013 \u0915\u093e \u0909\u092a\u092f\u094b\u0917 \u0915\u0930\u0947\u0902\u0964)
\r\n
\r\n(\u0932\u093f\u0916\u0928\u0947 \u0915\u0947 \u0932\u093f\u092f\u0947 \u092f\u0939\u093e\u0901 \u0915\u094d\u0932\u093f\u0915 \u0915\u0930\u0947\u0902)
\r\n
\r\n
\r\n\r\n\r\nIn the figure, PQRS is formed by joining the midpoints of a quadrilateral ABCD. Prove that PQRS is a parallelogram.
\r\n
\r\n
\r\n(Hint: Use the result of the Midpoint Theorem - The line joining the midpoints of two sides of a triangle is parallel to the third side and half of it.)
\r\n