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1 Learning outcomes 
Working through this chapter, you will gain the following knowledge and skills. After you have worked through it 
you should come back to these points, ticking off those with which you feel happy. 

 

 

Learning outcome Tick 
box 

Be able to set out data appropriately in SPSS to carry out a Principal Component Analysis and also a 
basic Factor analysis. 

 

Be able to assess the data to ensure that it does not violate any of the assumptions required to carry 
out a Principal Component Analysis/ Factor analysis. 

 

Be able to select the appropriate options in SPSS to carry out a valid Principal Component 
Analysis/factor analysis. 

 

Be able to select and interpret the appropriate SPSS output from a Principal Component Analysis/factor 
analysis. 

 

Be able explain the process required to carry out a Principal Component Analysis/Factor analysis.  

Be able to carry out a Principal Component Analysis factor/analysis using the psych package in R.  

Be able to demonstrate that PCA/factor analysis can be undertaken with either raw data or a set of 
correlations 

 

 

After you have worked through this chapter and if you feel you have learnt something not mentioned above 
please add it below: 
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2 Introduction 
This chapter provides details of two methods that can help you to restructure your data specifically by reducing 
the number of variables; and such an approach is often called a “data reduction” or “dimension reduction” 
technique.  What this basically means is that we start off with a set of variables, say 20, and then by the end of 
the process we have a smaller number but which still reflect a large proportion of the information contained in 
the original dataset.  The way that the ‘information contained’ is measured is by considering the variability within 
and co-variation across variables, that is the variance and co-variance (i.e. correlation). Either the reduction might 
be by discovering that a particular linear componation of our variables accounts for a large percentage of the 
total variability in the data or by discovering that several of the variables reflect another ‘latent variable’. 

This process can be used in broadly three ways, firstly to simply discover the linear combinations that reflect the 
most variation in the data. Secondly to discover if the original variables are organised in a particular way 
reflecting another a ‘latent variable’ (called Exploratory Factor Analysis – EFA) Thirdly we might want to confirm 
a belief about how the original variables are organised in a particular way (Confirmatory Factor Analysis – CFA). It 
must not be thought that EFA and CFA are mutually exclusive often what starts as an EFA becomes a CFA.  

I have used the term Factor in the above and we need to understand this concept a little more. 

A factor in this context (its meaning is different to that found in Analysis of Variance) is equivalent to what is 
known as a Latent variable which is also called a construct.  

construct = latent variable = factor 

A latent variable is a variable that cannot be measured directly but is measured indirectly through several 
observable variables (called manifest variables).  Some examples will help, if we were interested in measuring 
intelligence (=latent variable) we would measure people on a battery of tests (=observable variables) including 
short term memory, verbal, writing, reading, motor and comprehension skills etc. 

Similarly we might have an idea that patient satisfaction (=latent variable) with a person’s GP can be measured by 
asking questions such as those used by Cope et al (1986), and quoted in Everitt & Dunn 2001 (page 281). Each 
question being presented as a five point option from strongly agree to strongly disagree (i.e. Likert scale, scoring 
1 to 5): 

1. My doctor treats me in a friendly manner 
2. I have some doubts about the ability of my doctor 
3. My doctor seems cold and impersonal 
4. My doctor does his/her best to keep me from worrying 
5. My doctor examines me as carefully as necessary 
6. My doctor should treat me with more respect 
7. I have some doubts about the treatment suggested by my 

doctor 
8. My doctor seems very competent and well trained 
9. My doctor seems to have a genuine interest in me as a person 
10. My doctor leaves me with many unanswered questions about 

my condition and its treatment 
11. My doctor uses words that I do not understand 
12. I have a great deal of confidence in my doctor 
13. I feel a can tell my doctor about very personal problems 
14. I do not feel free to ask my doctor questions 

You might be thinking that you could group some of the 
above variables (manifest variables) above together to 
represent a particular aspect of patient satisfaction with 
their GP such as personality, knowledge and treatment.  So 
now we are not just thinking that a set of observed variables 
relate to one latent variable but that specific subgroups of 
them relate to specific aspects of a single latent variable 
each of which is itself a latent variable.   

Two other things to note; firstly often the observable 
variables are questions in a questionnaire and can be 
thought of as items and consequently each subset of items represents a scale.  

Latent variables / factor 
construct etc 

X1 

Patient 
satisfaction  

error 

GP 
Personality 

GP 
knowledge 

Treatment 

X2 error 

X3 error 

X4 error 

X5 error 

X6 error 

X7 error 

X8 error 

X9 error 

X10 error 

X11 error 

X12 error 

X13 error 

X14 error Observed variables  
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Secondly you will notice in the diagram above that besides the line pointing towards the observed variable Xi 
from the latent variable, representing its degree of correlation to the latent variable, there is another line 
pointing towards it labelled error. This error line represents the unique contribution of the variable, that is that 
portion of the variable that cannot be predicted from the remaining variables.   This uniqueness value is equal to 
1-R2 where R2 is the standard multiple R squared value.  We will look much more at this in the following sections 
considering a dataset that has been used in many texts concerned with factor analysis, using a common dataset 
will allow you to compare this exposition with that presented in other texts. 

2.1 Hozinger & Swineford 1939 
 

In this chapter we will use a subset of data from the Holzinger and Swineford (1939) study where they collected 
data on 26 psychological tests from seventh – eighth grade children in a suburban school district of Chicago (file 
called grnt_fem.sav). Our subset of data consists of data from 73 girls from the Grant-White School.  The six 
variables represent scores from seven tests of different aspects of educational ability, Visual perception, Cube 
and lozenge identification, Word meanings, sentence structure and paragraph understanding.  

 Descriptive Statistics  (produced in SPSS) 
 

  N Minimum Maximum Mean Std. Deviation 

VISPERC 73 11.00 45.00 29.3151 6.91592 

CUBES 73 9.00 37.00 24.6986 4.53286 

LOZENGES 73 3.00 36.00 14.8356 7.91099 

PARAGRAP 73 2.00 19.00 10.5890 3.56229 

SENTENCE 73 4.00 28.00 19.3014 5.05438 

WORDMEAN 73 2.00 41.00 18.0137 8.31914 

          

 

 Correlations  

 wordmean sentence paragrap lozenges cubes visperc 

wordmean 1.000      

sentence .696 1.000     

paragrap .743 .724 1.000    

lozenges .369 .335 .326 1.000   

cubes .184 .179 .211 .492 1.000  

visperc .230 .367 .343 .492 .483 1.000 

 
 

 

Exercise 1.  

Consider how you might use the above information to assess the data concerning: 

 The shape of the various distributions 

 Any relationships that may exist between the variables 

 Any missing / dodgy(!) values 

Could some additional information help? 
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3 Overview of the process 
There are many varieties of factor analysis involving a multitude of different techniques, however the common 
characteristic is that factor analysis is carried out using a computer although the early researchers in this area 
were not so lucky, with the first paper introducing factor analysis being published in 1904 by C. Spearman of 
Spearman’s rank correlation coefficient fame, long before the friendly PC was available.  

Factor analysis works only on interval/ratio data, and ordinal data at a push. If you want to carry out some type 
of variable reduction process on nominal data you have to use other techniques or substantially adapt the factor 
analysis see Bartholomew, Steele, Moustaki & Galbraith 2008 for details. 

3.1 Data preparation 

Any statistical analysis starts with standard data preparation techniques and factor analysis is no different. Basic 
descriptive statistics are produced to note any missing/abnormal values and appropriate action taken. Also in 
addition to this two other processes are undertaken: 

1. Any computed variables (slickly speaking only linear transformations) are excluded from the analysis. 
These are easily identified as they will have a correlation of 1 with the variable from which they were 
calculated. 

2. All the variables should measure the construct in the same direction.  Considering the GP satisfaction 
scale we need all the 14 items to measure satisfaction in the same direction where a score of 1 
represents high satisfaction and 5 the least satisfaction or the other way round. The direction does not 
matter the important thing is that all the questions score in the same direction. Taking question 1: My 
doctor treats me in a friendly manner and question, this provides the value 1 when the respondent 
agrees, representing total satisfaction and 5 when the respondent strongly disagrees and is not satisfied. 
However question three is different: My doctor seems cold and impersonal. A patient indicating strong 
agreement to this statement would also provide a value of 1 but this time it indicates a high level of 
dissatisfaction.  The solution is to reverse score all these negatively stated questions.  

Considering our Holzinger and Swineford dataset we see that we have 73 cases and from the descriptive statistics 
produced earlier there appears no missing values and no out of range values. Also the correlation matrix does not 
contain any ‘1’’s except the expected diagonals. 

3.2 Do we have appropriate correlations to carry out the factor analysis? 
The starting point for all factor analysis techniques is the correlation matrix.  All factor analysis techniques try to 

clump subgroups of variables together 
based upon their correlations and often 
you can get a feel for what the factors 
are going to be just by looking at the 
correlation matrix and spotting clusters 
of high correlations between groups of 
variables.  

Looking at the matrix from the Holzinger 
and Swineford dataset we see that 
Wordmean, sentence and paragraph 
seem to form one cluster and lozenges, 

cubes and visperc tests the other cluster.    

Norman and Streiner (p 197) quote Tabachnick & Fidell (2001) saying that if there are few correlations above 0.3 
it is a waste of time carrying on with the analysis, clearly we do not have that problem. 

Besides looking at the correlations we can also consider any number of other matrixes that the various statistical 
computer programs produce. I have listed some below and filled in some details. 
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Anti-image Matrices 

 visperc cubes lozenges paragraph sentence wordmean 

Anti-image  
Covariance 

visperc .613 -.204 -.177 -.065 -.101 .091 

cubes -.204 .676 -.210 -.017 .042 -.008 

lozenges -.177 -.210 .615 .022 -.012 -.100 

paragraph -.065 -.017 .022 .354 -.145 -.176 

sentence -.101 .042 -.012 -.145 .399 -.133 

wordmean .091 -.008 -.100 -.176 -.133 .371 

Anti-image  
Correlation 

visperc .734
a
 -.317 -.289 -.140 -.204 .191 

cubes -.317 .732
a
 -.326 -.034 .082 -.015 

lozenges -.289 -.326 .780
a
 .047 -.025 -.209 

paragraph -.140 -.034 .047 .768
a
 -.385 -.486 

sentence -.204 .082 -.025 -.385 .803
a
 -.346 

wordmean .191 -.015 -.209 -.486 -.346 .743
a
 

a. Measures of Sampling Adequacy(MSA) 

 
 

Exercise 2.  

Considering each of the following matrixes complete the table below: 

 

Name of the matrix Elements are: Good signs Bad signs 

Correlation  ‘R’ correlations Many above 0.3 and 
possible clustering 

Few above 0.3 

Partial correlation  Few above 0.3 and 
possible clustering 

Many above 0.3 

Anti-image correlation Partial correlations - 
reversed 

Few above 0.3 and 
possible clustering 

Many above 0.3 

    

 

 

While eyeballing is a valid method of statistical analysis (!) obviously some type of statistic, preferably with an 
associated probability density function to produce a p value, would be useful to help us make this decision. Two 
such statistics are the Bartlett test of Sphericity and the Kaiser-Meyer-Olkin Measure of Sampling Adequacy 
(usually called the MSA).  

The Bartlett Test of Sphericity compares the correlation matrix with a matrix of zero correlations (technically 
called the identity matrix, which consists of all zeros except the 1’s along the diagonal).  From this test we are 
looking for a small p value indicating that it is highly unlikely for us to have obtained the observed correlation 
matrix from a population with zero correlation.   However there are many problems with the test – a small p 
value indicates that you should not continue but a large p value does not guarantee that all is well (Norman & 
Streiner p 198). 

The MSA does not produce a P value but we are aiming for a value over 0.8 and below 0.5 is considered to be 
miserable! Norman & Streiner p 198 recommend that you consider removing variables with a MSA below 0.7  

In SPSS we can obtain both the statistics by selecting the menu option Analyse-> dimension reduction and then 
placing the variables in the variables dialog box and then selecting 
the descriptives button and selecting the Anti-image option to show 
the MSA for each variable and the KMO and Bartlett’s test for the 
overall MSA as well: 

 

 

We can see that we have good values for 
all variables for the MSA but the overall 
value is a bit low at 0.763, however 
Bartlett’s Test of Sphericity has an 
associated P value (sig in the table) of  
<0.001 as by default SPSS reports p values of less than 0.001 as 0.000! So from the above results we know that 
we can now continue and perform a valid factor analysis. 

Finally I mentioned that we should exclude variables that are just simple derivations of another in the analysis, 
say variable A = variable B + 4. A similar problem occurs with variables that are very highly correlated (this is 
called multicollinearity) and when this occurs the computer takes a turn and can’t produce valid factor loading 
values. A simple way of assessing this is to inspect a particular summary measure of the correlation matrix called 
the determinant and check to see if it is greater than 0.00001 (Field 2012 p771). Clicking on the determinant 
option in the above dialog box produces a determinant value of 0.0737 for our dataset.   

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .763 

Bartlett's Test of Sphericity 

Approx. Chi-Square 180.331 

df 15 

Sig. .000 
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3.3 Extracting the Factors 
There are numerous ways to do this, and to get an idea you just need to look at the pull down list box in SPSS 

shown opposite. 

There are two common methods, the Principal components and 
the Principal axis factoring extraction methods and strictly 
speaking the Principal components method is not a type of factor 
analysis but it often gives very similar results. Let’s try both and 
see what we get. 

However there is one other thing we need to consider first. How 
many latent variables do we want or do we want the computer to 
decide for use using some criteria – the common method is to let 
the computer decide for use by simply selecting the Eigenvalues 
greater than 1 option however there are several reasons why this 

is not an altogether good idea both Norman & Streiner 2008 and Field 2012 discuss them in detail.  For now I’ll 
use the dodgy eigenvalue >1 approach. 

I have run both a Principal Axis and also a Principal Component Analysis below. 

You will notice that both methods extracted 2 factors. However the factor loadings (or strictly speaking the 
component loadings for the PCA) for the PCA are larger in absolute values as are the communalities and as a 
consequence the total variance explained is also greater. Here are a few pointers to help you interpret the above: 

Factor loadings for the PA  = correlation between a specific observed variable and a specific factor. Higher values 
mean a closer relationship. They are equivalent to standardised regression coefficients (β weights) in multiple 
regression. Higher the value the better. 

Communality for the PA = Is the total influence on a single observed variable from all the factors associated with 
it.  It is equal to the sum of all the squared factor loadings for all the factors related to the observed variable and 
this value is the same as R2 in multiple regression. The value ranges from zero to 1 where 1 indicates that the 
variable can be fully defined by the factors and has no uniqueness. In contrast a value of 0 indicates that the 
variable cannot be predicted at all from any of the factors. The communality can be derived for each variable by 
taking the sum of the squared factor loadings for each of the factors associated with the variable. So for visperc = 
0.5552 + 0.4232 = 0.4869 and for cubes =0.4522 + 0.5532 =0.510  These values can be interpreted the same way as 
R squared values in multiple regression that is they represent the % of variability attributed to the model, 
inspecting the total variance explained table in the above analyses you will notice that this is how the % of 

Principal Axis (PA) 

Factor Matrix
a
 

 Factor 

1 2 

visperc .555 .423 

cubes .452 .553 

lozenges .585 .401 

paragraph .819 -.307 

sentence .785 -.270 

wordmean .778 -.330 

Extraction Method: Principal Axis Factoring. 

a. 2 factors extracted. 11 iterations required. 

 

Communalities 

 Extraction 

visperc .487 

cubes .511 

lozenges .504 

paragraph .764 

sentence .689 

wordmean .714 

Extraction Method: Principal Axis Factoring. 

 

Total Variance Explained 

Factor Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

dimension0 1 2.747 45.775 45.775 

2 .923 15.382 61.157 

Extraction Method: Principal Axis Factoring. 

 

Principal component (PCA) 

Component Matrix
a
 

 
Component 

1 2 

visperc .641 .490 

cubes .526 .660 

lozenges .670 .448 

paragraph .822 -.388 

sentence .811 -.374 

wordmean .794 -.427 

Extraction Method: Principal Component Analysis (PCA). 

a. 2 components extracted. 

 

Communalities 

 Extraction 

visperc .650 

cubes .712 

lozenges .650 

paragraph .826 

sentence .797 

wordmean .812 

Extraction Method: Principal Component Analysis. 

 

Total Variance Explained 

Component 
Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

dimension0 
1 3.099 51.648 51.648 

2 1.349 22.478 74.126 

Extraction Method: Principal Component Analysis. 
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variance column is produced.  Because we are hoping that the observed dataset is reflected in the model we 
want this value to be as high as possible, nearer to one the better.  

Uniqueness for each observed variable it is that portion of the variable that cannot be predicted from the other 
variables (i.e. the latent variables). It’s value is 1-communality. So for wordmean we have 1-0.714 = 0.286 and as 
the communality can be interpreted as the % of the variablility that is predicted by the model we can say this is 
the %  variability in a specific observed variable that is NOT predicted by the model. This means that we want this 
value for each observed variable to be as low as possible. On pgae 3 referring to the diagram it is the ‘error’ 
arrow. 

Total variance explained this indicates how much of the variability in the data has been modelled by the 
extracted factors.  You might think that given that the PCA analysis models 74% of the variability compared to just 
61% for the PA analysis we should go for the PCA results. However why the estimate is higher is because in the 
PCA analysis the initial estimates for the communalities are all set to 1 which is higher than for the PA analysis 
which uses an estimate of the R2 value also whereas the PCA makes use of all the variability available in the 
dataset in the PA analysis the unique variability for each observed variable is disregarded as we are only really 
interested in how each relates to the latent variable(s).  What is an acceptable level of variance explained by the 
model? Well one would hope for the impossible which would be 100%  often analyses are reported with 60-70%. 

Besides using the eigenvalue >1 criteria we could have inspected a scree pot and worked out where the factors 
levelled off – we will look at this approach latter.  

Now we have our factors we need to find a way of interpreting them – to enable this we 
carry out a process called factor rotation.  

3.4 Giving the factors meaning 
Norman & Streiner provide an excellent discussion as to the reasons for rotation in 
giving factors meaning.  To select a rotation method in SPSS you select the Rotation 
button in the factor analysis dialog box. We will consider two types Varimax and 
Promax. First Varimax: 

Varimax rotation from the PCA extraction method 

 

 

 

 

 

 

Varimax rotation from the PA extraction method 

 

 

 

 

 

 

We can see 
from both of the above set of results that they are pretty 
similar. Paragraph, sentence and Wordmean load heavily on 
the first factor/component and the other three on the 
second factor/component. 

By selecting the Varimax rotation option I have demanded 
that the factors are uncorrelated (technically orthogonal). However, this might not be the case and we can use a 
rotation that allows for correlated factors and such a one is   Promax.  

Rotated Factor Matrix
a
 

 
Factor 

1 2 

visperc .219 .663 

cubes .061 .712 

lozenges .256 .662 

paragraph .849 .209 

sentence .800 .220 

wordmean .829 .167 

Extraction Method: Principal Axis Factoring. 
Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 

 

Rotated Component Matrix
a
 

 
Component 

1 2 

visperc .216 .777 

cubes .022 .843 

lozenges .264 .762 

paragraph .890 .186 

sentence .872 .190 

wordmean .891 .137 

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 
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PA extraction with Promax rotation 

 
Factor Correlation Matrix 

Factor 1 2 

dimension0 
1 1.000 .458 

2 .458 1.000 

Extraction Method: Principal Axis Factoring. 
Rotation Method: Promax with Kaiser Normalization. 

 
So by allowing the two latent variables 
to correlate which has resulted in a 
correlation of 0.458 the factor loading have changed little.  

The next thing we do is to disregard those loading below a certain threshold on each factor often this is 
something like 0.3 or 0.4 but Norman and Streiner suggest a significant test (page 205) but for now I’ll use the 
quick and dirty approach. Looking at the above I have highlighted the high loadings for each factor and we can 
see immediately it makes sense, that is they seem to appear logical. 

Possibly you might be asking yourself why we spent to all this time and effort when we have come to pretty much 
the same conclusion that we had when we eyeballed the correlation matrix at the start of the procedure, and 
some people agree. However factor analysis does often offer more than can be achieved by merely eyeballing a 
set of correlations along with some level of statistical rigor (although statisticians argue this point). 

 

Exercise 3.  

Made some suggestions for the names of the two latent variables (factors) identified. 

 

 

3.5 Reification 

Although the computer presents us with what appears a lovely organised se of variables that make or a factor 
there is no reason that this subset of variable should equate to something in reality.  This is also called the fallacy 
of misplaced concreteness. Basically it is assuming something exists because it appears so for example a Latent 
variable.  

Exercise 4.  

Do a Google search on reification – a good place to start is the Wikipedia article. 

 

 

 

 

 

  

Structure Matrix 

 
Factor 

1 2 

visperc .368 .696 

cubes .226 .706 

lozenges .404 .704 

paragraph .874 .404 

sentence .830 .403 

wordmean .845 .358 

Extraction Method: Principal Axis Factoring. 
Rotation Method: Promax with Kaiser Normalization. 

 



Factor analysis and Principal Component Analysis (PCA) 

C:\temporary from virtualclassroom\pca1.docx      Page 11 of 24 

3.6 Obtaining factor scores for individuals  
We can obtain the factor scores for each individual (case) and then compare them. In SPSS we select the Score 

button from the factor analysis options dialog box as shown 
below. 

The result is that two additional columns are added to the 
dataset each representing the factor score for each factor for 
each individuals standardised scores: 

 

The above shows the estimated factor scores for the FA analysis 
and opposite for the PCA analysis. 

How are the above factor scores for each case calculated? The answer is that an 
equation is used where the dependent variable is the predicted factor score and 
the independent variables are the observed variables. We can check this but to do 
this we need two more pieces of information the factor score coefficient matrix 
and the standardised scores for the observed variables. 

 

3.6.1 Obtaining the factor score coefficient matrix 

You obtain the factor score coefficient matrix by checking the Display factor score 
coefficient matrix option in the factor scores dialog box. 

 

 
Component Score Coefficient Matrix 

 
Component 

1 2 

visperc .207 .363 

cubes .170 .489 

lozenges .216 .332 

paragraph .265 -.288 

sentence .262 -.277 

wordmean .256 -.317 

Extraction Method: Principal Component Analysis. 
Component Scores. 

 
 

3.6.2 Obtaining standardised scores 

Standardised scores can easily obtained in SPSS using the Analyse -> descriptive statistics menu option.  

 

 

 

3.6.3 The equation 

For a Principle components analysis you can check the individual 
factor score values produced by SPSS values by plugging the 

standardised variable scores for the individual into the equation below, however this does not work for the other 
types of factor extraction as we have lost some of the variance in the extraction process, you can’t go back and in 
these cases the factor scores produced by SPSS are estimates rather than exact values.  
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So returning back to the PCA factors. As we have two factors we have two factor equations: 

Using the values from the component/factor score coefficient matrix: 

FS1 = (0.207)visperc + (0.170)cubes + (0.216)lozenges  + (0.265)paragraph + (0.262)sentence + (0.256)wordmean 

FS2 = (0.363)visperc + (0.489)cubes + (0.332)lozenges  + (-0.288)paragraph + (-0.277)sentence + (-0.317)wordmean 

Now considering the first case that is the first row in the SPSS datasheet, we can also plug in their standardised 
scores: 

FS1subject1 = (0. 207)0.53282 + (0. 170)(-0.59535) + (0. 216)0.27359  + (0. 265)(-0.72679) + (0. 262)(-0.45532) + (0. 256)(-0.96328) 

In R 

Answer <- (0.207)*0.53282 + (0.170)*(-0.59535) + (0.216)*0.27359  + (0.265)*(-0.72679) + (0.262)*(-0.45532) + (0.256)*(-0.96328) 

= -0.4903132 

Which is the same as the answer produced by SPSS, shown again opposite. 

Obviously you do not need to go through this process of checking how SPSS 
produced the individual factor score values I just did it to show you how they are 
produced. 

 

3.7 What do the individual factor scores tell us? 

What do these factor scores tell us about them, well as the first factor is 
concerned with reading/writing and the second one is concerned with visual comprehension, we can see how the 

individual has scored for each of these two latent 
variables. 

It is of interest to carry out some basic descriptive 
statistics on these new variables. Opposite is a simple 
scatterplot of the factor score from the PCA. While the 
degree of correlation is as expected we can see that 
the values range from around -3 to 3 for the first factor 
score (reading/writing ability) and around -4 to 4 for 
the second factor (visual comprehension). 

We can also see that the mean for each is zero and the 
standard deviation is 1 in other words they are 
standardised variables. 

 
Descriptive Statistics 

 N Minimum Maximum Mean 
Std. 

Deviation 

REGR factor score   
1 for analysis 1 

73 -2.63 2.56 .00 1.00 

REGR factor score   
2 for analysis 1 

73 -3.29 3.05 .00 1.00 

Valid N (listwise) 73     

 

Exercise 5.  

1. Why would we expect the factors not to be correlated in the above scatterplot? 
2. Would you expect the scatterplot to always show uncorrelated variables for any type of factor 

extraction/rotation strategy?  Hint: you may need to run the analysis several times with different 
extraction/rotation methods to see what you get to confirm your suspicions.   

3. Given that the factors are ‘standardised’ scores assuming that they are also normally distributed what 
would a score of around -2 for the first factor suggest (refer back to the first statistics course concerning Z 
values if necessary) 
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4 Summary - to Factor analyse or not 
We can use the information from the analysis along with the diagramming technique we introduced earlier to 
summarize our results in the diagram below. Notice that I have left out the lines where the loadings were below 

0.69 and I have used the results from the PA extraction with 
Promax rotation, showing the correlation between the two 
factors I could also have put the uniqueness values in (see page 3) 
but CPA does not take these into account compared to factor 
analysis. We followed a clearly defined set of stages:  

1. Data preparation (most of it was already been done in 
this example)  

2. Observed correlation matrix inspection 
3. Statistics to assess suitability of dataset for basis of PCA  

(KMO, Bartlett’s and determinant measures) 
4. Factor extraction -  PCA 
5. Factor rotation – to allow interpretation 
6. Factor name attribution 
7. Factor score interpretation 

We have barely scratched the surface in this short introduction and there has always a hot debate at to the 
benefits of CPA and factor analysis.  This is easily seen as analysis of each stage I is not described in the previous 
pages shows there are many ways of interpreting the results at that stage and also a multitude of ways of 
carrying out the next stage, not only this but different authorities suggest that the analysis stops at different 
points in the analysis and also different authors give different interpretations to the various results.  Quoting 
Everitt & Dunn 2001 page 288: 

Hills (1977) has gone as far as to suggest that factor analysis is not worth the time necessary to understand it and carry it out. And 
Chatfield and Collins (1980) recommend that factor analysis should not be used in most practical situations. Such criticisms go too far. 
Factor analysis is simply an additional, and at times very useful, tool for investigating particular features of the structure of multivariate 
observations. Of course, like many models used in analysing data, the one used in factor analysis is likely to be only a very idealized 
approximation to the truth in the situations in which it is generally applied. Such an approximation may, however, prove a valuable starting 
point for further investigations. 

Hills  M 1977 Book review. Applied statistics 26 339-340 

Chatfield  C, Collins A J 1980 Introduction to Multivariate Analysis. Chapman & Hall. London.    

Loehlin 2004 p.230-6 provides an excellent in depth criticism of Latent Variable modelling (of which factor 
analysis is one example).  In contrast to these criticisms a more positive approach can be found in many books 
about factor analysis for example chapter 7 entitled factor analysis in Bartholomew, Steele, Moustaki & Galbraith 
2008 also the conference proceedings held in 2004 entitled 100 years of factor analysis are available at 
http://www.fa100.info/    

Factor analysis forms the basis of a more complex technique called Structural Equation modelling (SEM) and all 
we have done here, and much more, can be achieved using SEM. SEM provides much more sophistication than 
the traditional exploratory factor analysis, although a traditional EFA often is the first step to a full SEM analysis 
notably we can compare models and also analyse the overall fit of a model this will be discussed in a chapter re-
analysing this data using a SEM framework. 

The next section provides a worked example of a typical PCA/factor analysis exam question.  I have also provided 
two practical sections one describing how to carry out a PCA/factor analysis using a correlation matrix as the 
basis rather than raw data and also how to carry out the equivalent analysis in R.  

 

 

 

Factor 2 
Visual 
perception?  

Factor 1 
Reading? 

cubes  

visperc 

lozenges 

paragraph 

sentence 

wordmean  

.696 

.706 

.704 

.847 
.830 

.845 

.458 

http://www.fa100.info/
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5 A typical exam question 
Kinnear and Gray (2004, page 429) provide the following example which is suitable for Principal Component 
Analysis (though the sample size is completely inadequate):   

Ten participants are given a battery of personality tests, comprising the following items: Anxiety; Agoraphobia; 
Arachnophobia; Adventure; Extraversion; and Sociability (with a scoring range of 0 to 100).  The purpose of this 
project is to ascertain whether the correlations among the six variables can be accounted for in terms of 

comparatively few latent variables or factors. 

 

 

In this section I will provide an answer to a typical 
exam question based on this data.  

 

The exam question 

Conduct a principal component analysis to 
determine how many important components are 
present in the data.  To what extent are the 
important components able to explain the 
observed correlations between the variables?  
Rotate the components in order to make their 

interpretation more understandable in terms of a specific theory.  Which tests have high loadings on each of the 
rotated components?  Try to identify and name the rotated components. 

 

5.1 Data layout and initial inspection 
The data are put into appropriately named SPSS variable columns: 

 

 

 

 Part Anx Agora Arach Adven Extra Socia 

 

 1 71 68 80 44 54 52 

 2 39 30 41 77 90 80 

 3 46 55 45 50 46 48 

 4 33 33 39 57 64 62 

 5 74 75 90 45 55 48 

 6 39 47 48 91 87 91 

 7 66 70 69 54 44 48 

 8 33 40 36 31 37 36 

 9 85 75 93 45 50 42 

 10 45 35 44 70 66 78 



Factor analysis and Principal Component Analysis (PCA) 

C:\temporary from virtualclassroom\pca1.docx      Page 15 of 24 

It is possible, as we have seen before, to look at the scatterplots of all the variables with one another, as I did 
before we are looking for significant correlations, and possibly clusters of them. Also we want to check that there 
are no perfectly correlated variables (which would need removing). The following output was generated by the 
Graphs, Scatterplot, Matrix command. 

 

We can also produce a correlation matrix verifying our 
suspicions from the scatterplot. Most of the correlations are 
well above 0.3 (a good indication that we will obtain a result) 
and there appears to be two groups of variables –highlighted in 
yellow below. Anxiety, Agoraphobia, and Arachnophobia in one, 
and Adventure, Extraversion, and Sociability in the other 

 

 

 

 

 

 

So we’ll go ahead with the Principal Component Analysis. 

 

5.2 Carrying out the Principal Component Analysis 
Click on Analyze, Dimension Reduction, Factor, to open the Factor Analysis dialogue box: 

 

 

Move the six variables over to the Variables: 
box.  Click on Descriptives… and select 
Univariate Descriptives, Coefficients, and 
Reproduced: 

 

 

Click on Continue, and 
then on Extraction 
where you should 
select Scree Plot, after 
making sure that the 
method chosen is 
Principal Components, 
that the analysis is to 
be carried out on the 
Correlation matrix1, that we want the un-rotated factor solution to be displayed, and that we want factors with 
eigenvalues over 1 to be extracted: 

                                                           
1
 If Covariance matrix is selected, more weight is given to variables with higher standard deviation.  With Correlation matrix, 

all the variables are given equal weight (by standardising them). 

Correlations 

 anx agora arach adven extra social 

anx Pearson Correlation 1      

agora Pearson Correlation .921
**

 1     

arach Pearson Correlation .979
**

 .921
**

 1    

adven Pearson Correlation -.389 -.461 -.366 1   

extra Pearson Correlation -.365 -.508 -.301 .905
**

 1 
**

 

social Pearson Correlation -.462 -.569 -.425 .967
**

 .934
**

 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

Anxiety Agora Arachno Advent Extrav Sociab
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Click on Continue and then on Rotation where you should select 
Varimax rotation and Loading plots: 

 

Click on Continue and then on Scores to select which type of factor scores you want to save in the data set, select 
regression: 

 

Click on Continue and the on OK (the Options subcommand isn’t relevant 
here).  The output is as follows: 

 

 

Exercise 6.  

Add some notes below about some of the various options in the dialogue 
boxes shown above. 

 

5.3 Interpreting the output 

5.4 Descriptive Statistics 
The table opposite simply shows the means, standard deviations and 
sample size for each variable.  It appears that the average score for all 
the tests is very similar and all have a similar spread. 

Next is the observed correlation matrix, which we have already 
commented on. 

 

 

 

 

The KMO value indicates that we have is pretty poor – just above miserable, however Bartlett’s test of sphericity 
with an associated p value of <0.001 indicates that we can proceed.   

5.5 Communalities 
Next is a table of estimated communalities (i.e. estimates of that part of 
the variability in each variable that is shared with others, and which is not 
due to measurement error or latent variable influence on the observed 
variable).  The initial values can be ignored.  

Descriptive Statistics

53.10 19.041 10

52.80 18.085 10

58.50 22.237 10

56.40 17.989 10

59.30 17.695 10

58.50 18.447 10

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

Mean Std.  Dev iation Analysis N

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .550 

Bartlett's Test of Sphericity 

Approx. Chi-Square 73.582 

df 15 

Sig. .000 

 

Correlation Matrix

1.000 .921 .979 -.389 -.365 -.462

.921 1.000 .921 -.461 -.508 -.569

.979 .921 1.000 -.366 -.301 -.425

-.389 -.461 -.366 1.000 .905 .967

-.365 -.508 -.301 .905 1.000 .934

-.462 -.569 -.425 .967 .934 1.000

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

Correlation

Anxiety Agora Arachno Adv ent Extrav Sociab

Communalities

1.000 .976

1.000 .942

1.000 .982

1.000 .954

1.000 .942

1.000 .980

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

Initial Extraction

Extraction Method: Principal Component Analysis.
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Component Matrixa

.824 .545

.878 .415

.799 .586

-.818 .533

-.804 .544

-.873 .467

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

1 2

Component

Extraction Method:  Principal Component Analysis.

2 components extracted.a. 

5.6 Eigenvalues and Scree Plot 
Next comes a table showing the importance of each of the six principal components.  Only the first two have 
eigenvalues over 1.00, and together these explain over 96% of the total variability in the data.  This leads us to 
the conclusion that a two factor solution will probably be adequate. 

 

This conclusion is supported by the scree splot (which is actually simply displaying the same data visually): 

. 

 

 

 

 

 

 

5.7 Unrotated factor loadings 
The unrotated factor loadings are presented next.  These 
show the expected pattern, with high positive and high 
negative loadings on the first factor: 

 

 

 

 

 

 

The next table shows the extent to which the original 
correlation matrix can be reproduced from two factors: 

 

The small residuals show 
that there is very little 
difference between the 
reproduced correlations 
and the correlations 
actually observed between 
the variables.  The two 
factor solution provides a 
very accurate summary of 
the relationships in the 
data. 

 

  

Total Variance Explained

4.164 69.397 69.397 4.164 69.397 69.397 2.895 48.251 48.251

1.612 26.862 96.259 1.612 26.862 96.259 2.881 48.008 96.259

.144 2.396 98.655

.052 .867 99.522

.023 .383 99.905

.006 .095 100.000

Component

1

2

3

4

5

6

Total % of  Variance Cumulativ e % Total % of  Variance Cumulativ e % Total % of  Variance Cumulativ e %

Initial Eigenvalues Extraction Sums of  Squared Loadings Rotation Sums of  Squared Loadings

Extraction Method: Principal Component Analysis.

1 2 3 4 5 6

Component Number

0

1

2

3

4

5

E
ig

e
n

v
a

lu
e

Scree Plot

We have now carried out, and 
answered the first part of the 
question "Conduct a principal 
component analysis to determine 
how many important components 
are present in the data" 

Reproduced Correlations

.976b .949 .978 -.383 -.365 -.464

.949 .942b .944 -.497 -.479 -.572

.978 .944 .982b -.341 -.323 -.423

-.383 -.497 -.341 .954b .948 .963

-.365 -.479 -.323 .948 .942b .956

-.464 -.572 -.423 .963 .956 .980b

-.028 .002 -.006 .000 .002

-.028 -.023 .036 -.028 .003

.002 -.023 -.025 .022 -.002

-.006 .036 -.025 -.042 .003

.000 -.028 .022 -.042 -.022

.002 .003 -.002 .003 -.022

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

Reproduced Correlation

Residual a

Anxiety Agora Arachno Adv ent Extrav Sociab

Extraction Method:  Principal Component Analysis.

Residuals are computed between observ ed and reproduced correlations. There are 0 (.0%) nonredundant

residuals with absolute values greater than 0.05.

a. 

Reproduced communalit iesb. 

We have now carried out, and answered the second 
part of the question "To what extent are the 
important components able to explain the observed 
correlations between the variables?" 
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5.8 Rotation 
The next table shows the factor loadings that result from Varimax rotation: 

 

These two rotated factors are just as good as the initial factors in explaining and reproducing the observed 
correlation matrix (see the table below).  In the rotated factors, Adventure, Extraversion and Sociability all have 
high positive loadings on the first factor (and low loadings on the second), whereas Anxiety, Agoraphobia, and 
Arachnophobia all have high positive loadings on the second factor (and low loadings on the first). 

 

 

 

Above, is the table showing the eigenvalues and percentage of variance explained again.  The middle part of the 
table shows the eigenvalues and percentage of variance explained for just the two factors of the initial solution 
that are regarded as important.  Clearly the first factor of the initial solution is much more important than the 
second.  However, in the right hand part of the table, the eigenvalues and percentage of variance explained for 
the two rotated factors are displayed.  Whilst, taken together, the two rotated factors explain just the same 
amount of variance as the two factors of the initial solution, the division of importance between the two rotated 
factors is very different.  The effect of rotation is to spread the importance more or less equally between the two 
rotated factors.  You will note in the above table that the eigenvalues of the rotated factor are 2.895 and 2.881, 
compared to 4.164 and 1.612 in the initial solution.  I hope that this makes it clear how important it is that you 
extract an appropriate number of factors.  If you extract more than are needed, then rotation will ensure that the 
variability explained is more or less evenly distributed between them.  If the data are really the product of just 
two factors, but you extract and rotate three, the resulting solution is not likely to be very informative. 

   

The next table gives information about the extent to which 
the factors have been rotated.  In this case, the factors 
have been rotated through 45 degrees.  (The angle can be 
calculated by treating the correlation coefficient as a 
cosine.  The cosine of 45 degrees is .707.) 

 

Rotated Component Matrixa

-.200 .967

-.330 .913

-.154 .979

.956 -.199

.953 -.181

.948 -.284

Anxiety

Agora

Arachno

Adv ent

Extrav

Sociab

1 2

Component

Extraction Method: Principal Component Analy sis. 

Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 

Total Variance Explained

4.164 69.397 69.397 4.164 69.397 69.397 2.895 48.251 48.251

1.612 26.862 96.259 1.612 26.862 96.259 2.881 48.008 96.259

.144 2.396 98.655

.052 .867 99.522

.023 .383 99.905

.006 .095 100.000

Component

1

2

3

4

5

6

Total % of  Variance Cumulativ e % Total % of  Variance Cumulativ e % Total % of  Variance Cumulativ e %

Initial Eigenvalues Extraction Sums of  Squared Loadings Rotation Sums of  Squared Loadings

Extraction Method: Principal Component Analysis.

Same overall % but very different division (  ) 
 

We have now carried out, and answered the 
third part of the question "Which tests have high 
loadings on each of the rotated components?" 

Component Transformation Matrix

-.709 .705

.705 .709

Component

1

2

1 2

Extraction Method: Principal Component Analy sis.  

Rotation Method: Varimax with Kaiser Normalization.
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5.9 Naming the factors 
SPSS now produces a decent plot of the six variables 
on axes representing the two rotated factors: 

 

It seems reasonable to tentatively identify the first 
rotated factor as “Outgoingness”, as Extraversion, 
Adventure, and Sociability all have high loadings on 
it.  The second rotated factors looks rather like 
“Neuroticism”, as Anxiety and the two phobias all 
have high loadings on it. 

 

The Saved Factor scores have been added to the 
data, as you will see overleaf.  These are 
standardized scores, obtained by applying the 
rotated factor loadings to the standardized score of 
each participant on each of the variables (just like 
making a prediction using a regression equation).  
Participant 8 has a low standardized score on the 
first rotated factor (-1.68) and can therefore be said 

to be low in “Outgoingness”.  The same participant also has a low standardized score on the second rotated 
factor   (-1.37) and can therefore be said to be low in “Neuroticism”.  Participant 6, on the other hand, scores high 
(1.79) on “Outgoingness”, but has a score close to average     (-.12) on “Neuroticsm”. 

 

 

 

5.10 Summary 
In answering the question requiring us to conduct a principal component analysis we went through a series of 
clearly defined stages: 

1. Data preparation (most of it was already been done in this example)  
2. Observed correlation matrix inspection 
3. Statistics to assess suitability of dataset for basis of PCA  (KMO, Bartlett’s and determinant measures) 
4. Factor extraction -  PCA 
5. Factor rotation – to allow interpretation 
6. Factor name attribution 
7. Factor score interpretation 

 

Exercise 7.  

For each of the above stages add a sentence stating its purpose along with another giving the finding(s) from 
the analysis above. 

------------------------------------  end of exam answer   ----------------------------------------------- 

-1.0 -0.5 0.0 0.5 1.0

Component 1

-1.0
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1.0
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Anxiety

Agora
Arachno

Advent

Extrav

Sociab

Component Plot in Rotated Space

We have now carried out, and answered the 
fourth and final part of the question "Try to 
identify and name the rotated components" 
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6 PCA and factor Analysis with a set of correlations or 
covariances in SPSS 

Often we wish to carry out a PCA or factor analysis in SPSS when we do not have the raw data but a set of 
correlations or covariances. You can achieve this using SPSS syntax, to do this you first need to open a new syntax 

window in SPSS assuming we are repeating the previous analysis we 
just type in now: 

 
The first thing to notice is the set of 
correlations which you will find on page 4. 

A quick explanation is given below: 

 

 

 
To actually run the SPSS syntax you need to highlight the code you wish to run and then click on the run button 
(below right). 

 

 

 

 

 

 

 

We need now to carry out the analysis but now 
we must use SPSS syntax and assuming we 
want to repeat what we did on page 8 that is a 
PCA with varimax rotation we write provide the 
following syntax: 

 

You can always use the dialog boxes to get a rough idea of what the syntax should look like, by clicking on the 
Paste button, before trying to write it yourself. For Example the syntax above for the Factor analysis was largely 

FACTOR 
 /MATRIX = IN (CORR=*) 
 /PRINT KMO EXTRACTION ROTATION 
  /PLOT EIGEN ROTATION 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PC 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX. 

MATRIX DATA VARIABLES = Rowtype_ wordmean sentence paragrap lozenges cubes visperc. 
BEGIN DATA 
CORR 1.000 
CORR .696  1.000 
CORR .743  .724  1.000 
CORR .369  .335  .326  1.000 
CORR .184  .179  .211  .492  1.000 
CORR .230  .367  .343  .492  .483  1.000 
N     73   73    73     73    73    73 
END DATA. 

Warning once you have used SPSS syntax to define the data as a correlation matrix you cannot use the SPSS dialog boxes to carry out any 
subsequent analysis. If you do you just get rubbish out. 
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generated from the factor analysis dialog boxes except the line /MATRIX= IN (CORR=*) which instructs SPSS to 
use the correlation matrix as the data which we previously defined also using SPSS syntax. 

    

You can get help about the SPSS syntax various ways but I personally prefer looking up the entry in the Command 
Syntax Guide which is a pdf file accessed from the help menu - don’t try printing this out as the FACTOR entry 
along is nearly 20 pages long, 
providing numerous examples, and 
often it is just a case of adapting one 
of them to your own particular needs. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

7 PCA and factor analysis in R 
There is a wealth of information about using R to carry out PCA and factor analysis in R. For PCA there is an 
excellent youtube video given by Edward Boone who is associate professor at Virginia Commonwealth University 
at: http://youtu.be/Heh7Nv4qimU you can see his personal page at: www.people.vcu.edu/~elboone2/   

There are many ways of carrying out factor analysis in R and the R site, quick-R (http://www.statmethods.net/), 
provides not only general advice about R but also detailed information about carrying out various types of factor 
analysis with links to sources of additional information all of which can be found at 
http://www.statmethods.net/advstats/factor.html    

The R psych package, mentioned above, aids factor analysis and the developer of the package maintains an 
excellent online book including a very detailed chapter on factor analysis (http://personality-
project.org/r/book/Chapter6.pdf ). Also the factor analysis chapter in Andy fields Discovering Statistics using R 
(2012) makes use of the package to carry out a PCA analysis.  

R offers many more options than SPSS for both PCA and factor analysis. One very interesting option (in the psych 
package) is the ability to create “Parallel Analysis Scree plots”. This is where R produces a random data matrix 
besides the dataset you are working with and then plots the Eigen values from both on a scree plot allowing you 
to assess the difference between what your dataset has produced against a random dataset. For more details see 
the fa.parallel() entry in the psych package manual. 

The R code on the next page repeats most of the analysis carried above previously in SPSS, and I have added 
numerous comments to aid understanding. Notice I have used various procedures from the psych package: 

 

  

http://youtu.be/Heh7Nv4qimU
http://www.people.vcu.edu/~elboone2/
http://www.statmethods.net/
http://www.statmethods.net/advstats/factor.html
http://personality-project.org/r/book/Chapter6.pdf
http://personality-project.org/r/book/Chapter6.pdf
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install.packages("psych", dependencies=TRUE) 
library(psych) 
hozdata <-read.delim(file=file.choose()) #the required file is available to download named grnt_fem.dat 
# put the data into a matrix of correlations 
hozdatamatrix <- cor(hozdata) 
# print out the correlation matrix but ask for numbers to 4 decimal places 
round(hozdatamatrix,4)   
# bartlett test - want a small p value here to indicate c0rrelation matrix not zeros 
cortest.bartlett(hozdata)   
# unable to calculate the kmo - see field 2012 p776 
# but can do the determinant need it to be above 0.00001 
# to be able to continue 
det(hozdatamatrix) 
# appropriate value therefore can continue 
#  do a pca analysis use the principal function in the psych package 
model1<- principal(hozdata, nfactors = 6, rotate = "none") 
model1 
# get the scree plot 
plot(model1$values, type = "b") 
# now know how many components we want to extract = 2 
# rerun the anylsis specifying this 
model2 <- principal(hozdata, nfactors = 2, rotate = "none") 
model2 
# can find the reproduced correlations and the communalities (the diagonals) 
factor.model(model2$loadings) 
# can also find the differences between the observed and model estimated correlations 
# the diagonals represent the uniqueness values (1- R squared): 
residuals <- factor.residuals(hozdatamatrix, model2$loadings) 
residuals 
# nice to plot the residuals to check there are normally distributed 
hist(residuals) 
# now to the rotation 
model3 <- principal(hozdata, nfactors = 2, rotate = "varimax") 
model3 
# can get the loading matrix to stop printing out loading below 
# a specific value say 0.3 cna also get it sorted by size of loading 
# h2 is the communality; u2 is the uniqueness  
print.psych(model3, cut = 0.3 , sort = TRUE) 
# now to do a principal axis factor analysis 
# fa means factoring method; rotate options=none/varimax/blimin/promax etc.  
model4 <- fa(hozdata, nfactors = 2,fm = "pa", rotate = "none") 
model4 
# repeat the analysis with a varimax rotation 
model5 <-  fa(hozdata, nfactors = 2,fm = "pa", rotate = "varimax") 
model5 
# repeat the analysis with a promax rotation (correlated factors) 
model6 <-  fa(hozdata, nfactors = 2,fm = "pa",rotate="promax") 
model6 
# the factor loadings in the above are not the same as that in SPSS 
# this is because SPSS scales the values using something called Kaiser normalisation 
# the psych package provides a function to do this 
# best to input the non rotated form into the function (info. from help file) 
model7 <- kaiser(model4, rotate="promax") 
model7 
#the above output is slight more like that of SPSS 
# to obtain factor scores 
# the for PCA we just add scores = true 
model3a <- principal(hozdata, nfactors = 2, rotate = "varimax", scores = TRUE) 
model3a 
# to print out all the scores: 
model3a$scores 
# to print out just the top 10 scores: 
head(model3a$scores, 10) 
# to save the above values we need to add them to a dataframe 
factorscores <- cbind(model3a$scores) 
# then we can produce a plot of the scores: 
 plot(factorscores) 

 
If you run the above script you will notice that there are many more statistics than that produced by SPSS this is 
because R takes a different approach to the factoring modelling process, considering of primary importance how 
well the model (i.e. the model correlations) fits the observed correlations.  This is in the spirit of the SEM 
approach which I will discuss in another chapter. 
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7.1 Using a matrix instead of raw data 
As in SPSS you can either provide raw data or a matrix of correlations as input to the CPA/factor analysis. The R 
code below provides an equivalent analysis to that described above but using a correlation matrix as input. 

library(psych) 
hozdatamatrix <-  matrix(c( 
1.000, .696, .743, .369, .184, .230,      
.696, 1.000, .724, .335, .179, .367,      
.743, .724, 1.000, .326, .211, .343,     
.369, .335, .326, 1.000, .492, .492,   
.184, .179,.211, .492, 1.000,  .483,    
.230, .367, .343, .492, .483, 1.000), ncol = 6, byrow = TRUE) 
# now give the columns and rows names 
colnames(hozdatamatrix)<- c("wordmean", "sentence", "paragrap", "lozenges", "cubes", "visperc") 
rownames(hozdatamatrix)<- c("wordmean", "sentence", "paragrap", "lozenges", "cubes", "visperc") 
######### you can NOT use the standard cor function i.e. cor(hozdatamatrix) 
#  With a correlaion matrix as it produces correlations or the correlations. 
# you can produce a correlation plot by using the cor.plot function 
# the darker the shading for the cell the highter the correlation 
cor.plot(hozdatamatrix) 
# According to the psych package manual you should be able to use the function 
#below to obtain p values for the associated correlation matrix 
# but these values appear very different to those produced by SPSS 
# corr.p(r = hozdatamatrix, n= 73) 
# In contrast using the determinant function det() 
#  gives same answer as using the raw data 0.07374609 
det(hozdatamatrix) 
# above gives same answer as using using raw data 0.07374609 
# To carry out a PCA analysis using a correlation matrix need to  
#  tell the principal function how many observations formed the 
#  basis oc the correlations specifying a value for the  the n.obs parameter 
model1<- principal(hozdatamatrix, nfactors = 6, n.obs = 73,  rotate = "none") 
model1 
# produces the same output as with the previous analysis with the raw data 
# to carry out a factor analysis using a correlation matrix 
# adapt the fa function in a similar way: 
modelb <- fa(hozdatamatrix, nfactors = 2, fm = "pa", n.obs = 73, rotate = "none") 
modelb 
 
# The above shows how easy it is to adapt to either using raw data or the correlation  matric  
# in R for PCA and factor analysis in R 
 

You can also use the table2matrix() function in the psych package to convert a R table to a matrix.  Also in the 
psych package is various read.clipboard() functions which allow you to copy and paste a matrix of correlations in 
something like Excel or word and then paste directly into R (see the psych package manual for details.   

 

Optional Exercise 8.  

Returning back to the patients’ satisfaction with their GP discussed on page 4 here are the correlations for the 14 
items discussed on that page. 

 

 

 

 

 

 

 

 

 

Quoting Everitt and Dunn 2001 p.283 “The results [Principal factor analysis + varimax rotation] suggests that we 
should use a three-factor solution. The rotated factors might be labelled 'trust in doctor', 'confidence in doctor's 
ability' and 'confidence in recommended treatment’.   Carry out an appropriate analysis and demonstrate that 
this is indeed the case. 

You might wish to try using one of the read.clipboard() functions. 

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1.00              

2 0.56 1.00             

3 0.63 0.58 1.00            

4 0.64 0.46 0.35 1.00           

5 0.52 0.44 0.50 0.52 1.00          

6 0.70 0.51 0.49 0.52 0.54 1.00         

7 0.45 0.48 0.28 0.34 0.38 0.63 1.00        

8 0.61 0.68 0.44 0.43 0.56 0.64 0.49 1.00       

9 0.79 0.58 0.66 0.55 0.66 0.64 0.34 0.70 1.00      

10 0.57 0.63 0.40 0.55 0.54 0.58 0.65 0.62 0.62 1.00     

11 0.32 0.27 0.33 0.21 0.13 0.26 0.22 0.24 0.17 0.25 1.00    

12 0.55 0.72 0.51 0.49 0.63 0.62 0.47 0.75 0.70 0.67 0.31 1.00   

13 0.69 0.51 0.60 0.54 0.51 0.73 0.44 0.50 0.66 0.53 0.24 0.65 1.00  

14 0.62 0.42 0.33 0.47 0.38 0.58 0.51 0.49 0.53 0.56 0.23 0.51 0.56 1.00 
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8 Summary 
 

This chapter has provided a large amount of information, focusing on the practical aspects of carrying out a PCA 
or factor analysis in SPSS or R. The first section focused on interpreting the output at each stage and then we 
considered a typical exam question and finally the matrix input approach using both SPSS and R. 
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