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Foreword 

In 1954, prior to the era of modem high speed computers, Leo A. Goodman and 
William H. Kruskal published the fmt of a series of four landmark papers on 
measures of association for cross classifications. By describing each of several 
cross classifications using one or more interpretable measures, they aimed to 
guide other investigators in the use of sensible data summaries. Because of their 
clarity of exposition, and their thoughtful statistical approach to such a complex 
problem, the guidance in this paper is as useful and important today as it was on 
its publication 25 years ago. 

Summarizing association in a cross-classification by a single number inevita­
bly loses information. Only by the thoughtful choice of a measure of association 
can one hope to lose only the less important information and thus arrive at a 
satisfactory data summary. The series of four papers reprinted here serve as an 
outstanding guide to the choice of such measures and their use. 

Many·users view measures of association as they do correlations, applicable to 
essentially all data sets. To their credit, Goodman and Kruskal argue that ideally 
each research problem should have one or possibly several measures of associa­
tion, with operational meaning, developed for its unique needs. Because the 
Goodman-Kruskal papers provide what amounts to a comprehensive catalogue of 
existing measures (several of which they themselves created), analysts may begin 
by examining and attempting to choose wisely from those measures currently 
available. If none are satisfactory, and new ones are created, the Goodman­
Kruskal papers will be helpful as models and guides. 

This series of papers evolved over a twenty year period. The first and core 
paper appeared in 1954. It suggests criteria for judging measures of association 
and introduces several new measures with specific contextual meanings. Exam­
ples and illustrations abound. The 1959 paper serves as a supplement to the inital 
one and provides additional historical and bibliographic material. The 1963 paper 
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vi Foreword 

derives large-sample standard errors for the sample analogues Of population 
measures of association and presents some numerical results about the adequacy 
of large-sample normal approximations. The 1972 paper presents a new look at 
the asymptotics, and provides a more unified way to derive large-sample var­
iances for those measures of association that can be expressed as ratios of func­
tions of the cell probabilities. Thus the techniques can be used for tried and true 
measures, and also for ones not yet invented. Only by rereading these papers 
many times can one appreciate the perspicacity that the authors have brought to 
this perplexing problem. 

As a colleague of Leo and Bill at The University of Chicago, I was privileged 
to witness the care and scholarly attention they gave to the last of the measures of 
association papers. It was truly a labor of love. Thus I am delighted both person­
ally and as a member of the Editorial Advisory Board for the Springer Statistical 
Series that Springer-Verlag has been able to bring together these four papers in a 
single volume, so that they can be shared with a new generation of statisticians 
and scientists. 

August, 1979 STEPHEN E. FIENBERG 



Preface * 

In the early 1950s, as young faculty members at the University of Chicago, we had 
separate conversations with senior colleagues there about statistical treatment of 
data that were naturally arranged as cross classifications of counts. One of us 
talked to Bernard Berelson (then Dean of the Graduate Library School and later the 
President of the Population Council), who was at that time dealing with extensive 
cross classifications related to voting beltavior. For example, he might have a 
number of cross classifications of intended vote against educational level for 
different sections of a city. 

The other conversations were with the late Louis Thurstone (a major figure in 
the field of psychometrics, and in particular in the development of factor analysis) , 
who also was dealing with multiple cross classifications in the context of the 
relationships between various personal characteristics (e.g., leadership ability) 
and results from various psychological tests. 

In both cases the investigator had substantial numbers of cross classifications 
and needed a sensible way to reduce the data to try to make it coherent. One 
promising approach was felt to be replacement of each cross classification by a 
number (or numbers) that measured in a reasonable way the degree of association 
between the characteristics corresponding to the rows and columns of the tabulated 
cross classification. 

Thus, the two of us were independently thinking about the same question. We 
discovered our mutual interest during a conversation at a party-we think that it 
was a New Year's Eve party at the Quadrangle (Faculty) Club-and the paper grew 
out of that interaction. 

We knew something of the existing literature on measures of association for 

*Most of this preface appeared in "This Week's Citation Classic", Current Contents, Social and 
Behavioral Sciences, No. 26, 25 June 1979, page 14. 
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viii Preface 

cross classifications, and as we studied it further we recognized that most 
suggested measures of association were formal and arbitrary, without relevant 
interpretations--or without interpretations at all. Our contribution was to suggest a 
number of association measures that have interesting interpretations and to provide 
a simple taxonomy for cross classifications. As an example of the latter, we 
emphasized the importance of knowing whether or not the categories of a classifi­
cation have not a natural ordering. 

Since cross classifications occur throughout science, since our emphasis on 
interpretation was perhaps novel, and since our work was quickly incorporated 
into textbook expositions, citations to the paper became numerous. We continued 
work on the topic, digging more deeply into its history and fields of application, 
and treating at length the relevant approximate sampling theory in an effort to 
contribute some new approaches and to effect some changes in statistical thinking 
and practice. 

One of us also developed an interest in ordinal measures of association beyond 
cross classifications as such.1 The other was led to extensive research in the 
analysis of mUlti-way cross classifications, ieading to what have come to be known 
as log-linear model theory and methodology.2 Another outgrowth, we dare to 
hope, of our paper has been fresh general concern with descriptive statistics from 
the viewpoint of finding usefully interpretable characteristics of populations and 
samples. 

In this reprinting, notes appear in the margin at a few points to indicate errors 
that were corrected in later papers of the sequence. One additional trivial error has 
been directly corrected. Otherwise the papers appear just as they originally 
appeared. 

We end this preface with a statement of thanks to W. Allan Wallis, first 
Chairman of the Department of Statistics at the University of Chicago. There are 
many reasons for us to thank him, but the relevant one now is that he introduced us 
to Berelson and to Thurstone, and from those introductions our thinking on 
measures of association arose . Wallis, in fact. did far more than perform introduc­
tion: he discussed our nascent work with us. and suggested an important approach 
with which his name is associated in our first paper. 

Chicago, Illinois 
September, 1979 

Leo A. Goodman 
William H. Kruskal 

IKruskal, w. H. Ordinal measures of association. J. Amer. Statist. Assoc. 53:814-61, 1958. 

zGoodman, L. A. The multivariate analysis of qUalitative data: interactions among multiple classifi­
cations. J. Amer. Statist. Assoc. 65:226-56, 1970. 
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MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS 733 

When populations are crosB-classified with respect to two 
or more classifications or polytomies, questions often arise 
about the degree of aaaociation existing between the several 
polytomies. Most of the traditional measures or indices of &II­

sociation are based upon the standard chi-square lltatistic or 
on an assumption of underlying joint normality. In this paper 
a number of alternative measures are considered, almost all 
based upon a probabilistic model for activity to which the 
crosB-classification may typically lead. Only the case in which 
the population is completely known is considered, so no qUe&­

tion of sampling or measurement error appears. We hope, 
however, to publish before long some approximate distribu­
tions for sample estimators of the measures we propose, and 
approximate tests of hypotheses. Our major theme is that the 
measures of association used by an empirical investigator 
should not be blindly chosen because of tradition and con­
vention only, although these factors may properly be given 
lIome weight, but should be constructed in a manner having 
operational meaning within the context of the particular prob­
lem. 

1. INTRODUCTION 

MANY studies, particularly in the social sciences, deal with popula­
tions of individuals which are thought of as cross-classified by 

two or more polytomies. For example, the adult individuals living in 
New York City may be classified as to 

Borough: 5 classes 
Newspaper moat often read: perhaps 6 classes 
Television set in home or not: 2 classes 
Level of formal education: perhaps 5 classes 
Age: perhaps 10 classes 

For simplicity we deal largely with the case of two polytomies, although 
many of our remarks may be extended to a greater number. The double 
polytomy is the most common, no doubt because of the ease with which 
it can be tabulated and displayed on the printed page. Most of our 
remarks suppose the population completely known in regard to the 
classifications, and indeed this seems to be the way to begin in the 
construction of rational measures of association. After agreement has 
been reached on the utility of a measure for a known population, then 

(London School of Economica and Political Science), Frederick Moet~ller (Harvard Univenity), 
I. Richard Savage (National Bureau of St&ndarda), Alan Stuart (London School of Eeonomica and 
Political Science), LouiII L. Thuratone (UnivBl'lity of North Carolina), John W. TuItey (Princeton 
(UnivBl'lity). W. Allen WaIIiII (UnivBl'lity of Chicaco), and E. J. Williame (Commonwealth Scientific 
and Industrial Re.arch OrpniAtion. Australia). Part of Mr. Goodman'. work on thill paper wu car­
ried out at the St&mtical Laboratory of the Univereity of Cambridge under a Fulbriaht A ward and a 
Social Science Reaearch Council Fe1lowahip. The authora were led to work on the probleme of thill paper 
.. a rewlt of convenationl with Louil L. Thuratone and Bernard R. Bere1eon. 
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one should consider the sampling problems associated with estimation 
and tests about this population parameter. 

A double polytomy may be represented by a table of the following 
kind:1 

B 
A 

Bl Bs ... B" Total 

Al Pll Pit · .. plfJ Pl· 

AI Pt1 P2I ... PtfJ PI· 

. 

. 
. 

A. P.I Pal · .. PafJ P.· 

Total P·I p·t · .. p." 1 

where 

Classification A divides the population into the ex classes 
AI, At, .. " A •. 

Classification B divides the population into the fJ classes 
B1, B1, ••• , B". 

The proportion of the population that is classified as both A. and 
B. is Po •• 

The marginal proportions will be denoted by 

Po. = the proportion of the population classified as A.. 
p .• =the proportion of the population classified as B •. 

If the use to which a measure of association were to be put could be 
precisely stated, there would be little difficulty in defining an appropri­
ate measure. For example, using the above. cross-classification of the 
New York City population, a. television service company might wish to 

1 Tablea of thia kind are frequently called c01lliftDfftCfllGbk •• We ahall not Ule thia term becaWMI of 
ita connotation of a specific II&mpling echeme when the population ill not known and one infel'll on the 
buill of a Dmple. 
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MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS 735 

place a single newspaper advertisement which would be read by as 
many prospective customers as possible. Then the important informa­
tion from the table of newspaper-most-often-read vs. television-set-in­
home-or-not would be: which newspaper is most often read among 
those with television sets? And a reasonable measure of association 
would simply be the proportion of those with television sets who read 
this newspaper. 

It is rarely the case, however, that the purpose of an investigation 
can be so specifically stated. More typically an investigation is ex­
ploratory or has a multiplicity of goals. Sometimes a measure of associ­
ation is desired simply so that a large mass of data may be summarized 
compactly. 

The basic theme of this paper is that, even though a single precise 
goal for an investigation cannot be specified, it is still possible and 
desirable to choose a measure of association which has contextual 
meaning, instead of using as a matter of course one of the traditional 
measures. In order to choose a measure of association which has mean­
ing we propose the construction of probabilistic models of predictive 
activity, the particular model to be chosen in the light of the particular 
investigation at hand. The measure of association will then be a prob­
ability, or perhaps some simple function of probabilities, within such a 
model. Such is our general contention; most of the remainder of this 
paper is concerned with its exemplification in particular instances. 

We wish to emphasize that the specific measures of association de­
scribed here are not presented as factotum or universal measures. 
Rather, they are suggested as reasonable for use in appropriate circum­
stances only, and even in those circumstances other measures may and 
should be considered and investigated. 

A good deal of attention has been paid in the literature to the special 
case of two dichotomies. We are more interested here in measures of 
association suitable for use with any numbers of classes in the poly to­
mies or classifications. 

2. FOUR PRELIMINARY CONSIDERATIONS 

Four distinctions or cautionary remarks should be made early in any 
discussion of measures of association. 

2.1. Continua 

We mayor may not wish to think of a polytomy as arising from an 
underlying continuum. For example, age may for convenience be di-

5 
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vided into ten classifications, but it clearly does arise from an under­
lying continuum; however, newspaper-most-often-read would scarcely 
be so construed. If a polytomy does arise from an underlying continuum 
one mayor may not wish to assume that the population has some spe­
cific kind of distribution with respect to it. 

In those cases in which all the polytomies of a study arise jointly from 
a multivariate normal distribution on an underlying continuum, one 
would naturally turn to measures of association based on the correla­
tion coefficients. These in turn might well be estimated from a sample 
by the tetrachoric correlation coefficient method or a generalization of 
it. In some cases one polytomy may arise from a continuum and the 
other not. An interesting discussion of this case for two dichotomies 
was given in 1915 by Greenwood and Yule ([3], Section 3). We do 
not discuss ~ither of these cases in this paper, but restrict ourselves to 
situations in which there are no relevant underlying continua. 

The desirability of assuming an underlying joint continuum was one 
of the issues of a heated debate forty years ago between Yule [15} on 
the one hand and K. Pearson and Heron [9] on the other. Yule's 
position was that very frequently it is misleading and artificial to 
assume underlying continua; Pearson and Heron argued that almost 
always such an assumption is both justified and fruitful. 

2.2. Order 
There mayor may not be an underlying order between the classifi­

cations of a polytomy. For example "level of formal education" admits 
an obvious ordering; but borough of residence would not usually be 
thought of in an ordered way. If there is an ordering, it mayor may 
not be relevant to the investigation. Sometimes an ordering may be 
important but not its direction. If there is an underlying one-dimen­
sional continuum, it establishes an ordering. 

When there is no natural or relevant ordering of the classes of a 
polytomy, one may reasonably ask that a measure of association not 
depend on the particular order in which the classes are tabulated. 

2.3. Symmetry 

It mayor may not be that one looks at two polytomies symmetri­
cally. When we are sure a priori that a causal relationship (if it exists) 
runs in one direction but not the other, then our viewpoint will be 
a.symmetric. This will also happen if one plans to U8e the results of the 
experiment in one direction only. On the other hand, there is often no 
reason to give one polytomy precedence over another. 

6 
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2.4. Manner of Formation of the ClQ,88e8 

737 

Decisions about the definitiQPs of the classes of a polytomy, or 
changes from a finer to a coarSer classification (or vice-versa), can 
affect all the measures of association of which we know. For example, 
suppose we begin with the 4 X 4 table 

0 .25 0 0 

.25 0 0 0 

0 0 0 .25 

0 0 .25 0 

and combine neighboring pairs of classes. We obtain 

.5 0 

o .5 

which might greatly change a measure of association. Or we might 
combine the three bottom rows and the three right-hand columns. 
This gives 

o .25 

.25 .5 

which presents quite a different intuitive degree of association. By 
other poolings one can obtain other 2 X2 tables. 

Although this example is extreme, similar changes can be made in 
the character of almost any cross-classification table. Related examples 
are discussed by Yule [15]. 

l\.t first this consideration might seem to vitiate any reasonable dis­
cussion of measures of association. We feel, however, that it is in fact 
desirable that a measure of association reflect the classes Q,8 defined for 

7 
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the data. Thus one should not speak, for example, of association between 
income level and level of formal education without specifying particular 
class definitions. Of course, in many cases association-however meas­
ured-would not be much affected by any reasonable redefinition of 
the classes, and then the above finicky form of statement can be simpli­
fied. That the definition of the classes can affect the degree of associa.­
tion naturally means that careful attention should be given to the class 
definitions in the light of the expected uses of the final conclusions. 

3. CONVENTIONS 

It is conventional, and often convenient, to set up a measure of 
association so that either 

(i) It takes values between -1 and + 1 inclusive, is -1 or + 1 in 
case of "complete association," and is zero in the case of inde­
pendence. 

Cii) It takes values between 0 and + 1 inclusive, is + 1 in the case 
of "complete association," and is zero in the case of inde­
pendence. 

Convention (i) is appropriate when the association is thought of as 
signed (e.g., association between income and dollars spent is positive, 
between income and per cent of income spent is negative). Convention 
(ii) is appropriate when no such sign considerations exist, as when 
there is no natural order. 

"Complete association," as we shall see, is somewhat ambiguous. 
"Independence," on the other hand, has its usual meaning, that is 

(1) Pab = Pa·P·b (a = 1, ... , a; b = 1, ... , fJ). 

Conventions like these have seemed important to some authors, but 
we believe they diminish in importance as the meaningfulness of the 
measure of association increases. One real danger connected with such 
conventions is that the investigator may carryover size preconceptions 
based upon experience with completely different measures subject to 
the same conventions. For example, some elementary statistics text­
books warn that a population correlation coefficient less than about .5 
in absolute value may have little practical significance, in the sense 
that then the conditional variance is not much less than the marginal 
variance. Research workers in various fields thus tend to develop rather 
strong feelings that population correlation coefficients less than, say, 
.5, have little substantive importance. The same feelings might be 

8 
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carried over, without justification, to all other measures of association 
so defined as to lie between + 1 and -1. 

It should also be mentioned that once one has a measure of associ­
ation satisfying one of the above conventions, then an infinite number 
of others also satisfying the same convention can be obtained-for 
example, by raiRing to a power and adjusting the sign if necessary. 

4. TRADITIONAL MEASURES 

Excellent accounts of these may be found in [16], Chaps. 2 and 3, 
and [7], Chap. 13. Many of these stem from the standard chi-square 
statistic upon which a test of independence is usually based. If a finite 
population has" members and we set "ab="Pab, "a. = "Pa" ".b="P.b. etc., 
the chi-square statistic in the case of two classifications is 

(2) L: L: ("ab - "a''''b/,,)2 = " L: L 
a b "0''',6/'' a 6 

Pab2 
=" L2: ---II. 

a 6 Pa·P·b 

(Pab - Pa·P·6)2 

A great deal of attention has been given to the case ex = ~ = 2. For 
this special case Yule has defined the following coefficient of association: 

(3) 
"11"22 - "12"21 

Q=----
"11"22 + "12"21 

whose numerator squared is essentially the same as that of a convenient 
and popular form for x2 in the 2X2 case. Another coefficient suggested 
by Yule for the 2 X2 case is 

V"11112 - V 11121121 y= . 
V II11J122 + V 11121121 

(4) 

A coefficient often used for the general exX/3 case is simply x2/", often 
called the mean square contingency and denoted by ,p2. A variation 
of this, suggested by Karl Pearson, is 

(5) c=./ [X2/ 1I ] 

11 1 + x2/" 

which has been called the coefficient of contingency, or the coefficient 
of mean square contingency. Another variation, proposed by Tschu-
prow, is 

9 
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* (6) T = v'[x2/vl!(a - 1)(,8 - 1). ' 

The last two suggestions, according to Kendall [7], were made in at­
tempts to norm ~ so that it might lie between 0 and 1 and take the 
extreme values under independence and "complete association." 
Cramer ([1], p. 282) suggests the following variant: 

(7) [x2/v]jMin (a - 1, ,8 - 1) 

which gives a better norming than does C or T since it lies between 0 
and 1 and actually attains both end points appropriately. Cramer's 
suggestion does not seem to be well known by workers using this gen­
eral kind of index. 

The fact that an excellent test of independence may be based on x2 

does not at all mean that x2, or some simple function of it, is an ap­
propriate measure of degree of association. A discussion of this point 
is presented by R. A. Fisher ([2], Section 21). We have been unable to 
find any convincing published defense of x2-like statistics as measures 
of association. 

One difficulty with the use of the traditional measures, or of any 
measures that are not given operational interpretation, is that it is 
difficult to compare meaningfully their values for two cross-classifica­
tions. Suppose that C turns out to be .56 and .24 respectively in two 
cross-classification tables. One wants to be able to say that there is 
higher association in the first table than the second, but investigators 
sometimes restrain themselves, with commendable caution, from 
making such a comparison. Their restraint may stem in part from the 
noninterpretability of C. (Of course, when samples are small they may 
also be restrained by inadequate knowledge of sampling fluctuation.) 

One class of measures that will not be discussed here is characterized 
by the assignment of numerical scores to the classes, followed by the 
use of the correlation coefficient on these scores. A recent article on 
such measures is by E. J. Williams [12]. It contains references leading 
back to earlier literature. We feel that the use of arbitrary scores to 
motivate measures is infrequently appropriate, but it should be pointed 
out that measures not motivated by the correlation of scores can often 
be thought of from the score viewpoint. 

5. MEASURES BASED ON OPTIMAL PREDICTION 

5.1. Asymmetrical Optimal Prediction. A Particular Model of Activity 

Let us consider first a probabilistic model which might be useful in 
a situation of the following kind: 

10 
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(t") Two polytomies, A and B. 
(ii) No relevant underlying continua. 

(iii) No natural ordering of interest. 

741 

(iu) Asymmetry holds: The A classification precedes the B classifi-
cation chronologically, causally, or otherwise. 

An example of such a situation might be a study of the .association 
between college attended (A) and kind of adult occupation (B). Our 
model of activity is the following: An individual is chosen at random 
from the population and we are asked to guess his B-class as well as 
we can, either 

1. Given no further information, or 
S. Given his A class. 

Clearly we can do no worse in case 2 than in case 1. Represent by p.". 

the largest marginal proportion among the B classes and by Pam the 
largest proportion in the ath row of the cross-classification table-that 
is 

(8) p.", = Max p.", Pa", = Max Pal> • 

" " 
Then in case 1 we are best off guessing that B" for which p.,,= p .... -that 
is, guessing that B class which has the largest marginal proportion-and 
our probability of error is 1-p ..... In case 2 we are best off guessing that 
B" for which Pa" = Pam. (letting Aa be the given A class)-that is, guessing 
that B class that has the largest proportion in the observed A class­
and our probability of error is! 1- LaPa",. 

Then we propose as a measure of association (following Guttman [4]) 

(Prob. of error in case 1) - (Prob. of error in case 2) 
(9) Xl> = ~--------~------

(Prob. of error in case 1) 

a 

1 - p.". 

which is the relative decrease in probability of error in guessing B" as 
between Aa unknown and All known. To put this another way, }." gives 
the proportion of errors that can be eliminated by taking account of 
knowledge of the A classifications of individuals. 

Some important properties of X" follow: 

I It may be that in calle 1 there ia more than one b for which p •• -P .... Then any method of chOOlllnc 
which of theee b'a to gueu--inoluding f1ippinc an appropriately multi_eel die-1livetl riM to the .me­
probabiUty of error, 1-p .... A 8imi1ar comment appUes to cue 2. 

11 
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(i) ).6 is indeterminate if and only if the population lies in one 
column, that is, lies in one B class. 

(ii) Otherwise the value of ).6 is between 0 and 1 inclusive. 
(iii) ).6 is 0 if and only if knowledge of the A classification is of no 

help in predicting the B classification, i.e., if there exists a bo 
such that Pdo = PGm for all a. 

(iv) A6 is 1 if and only if knowledge of an individual's A class com­
pletely specifies his B class, i.e., if each row of the cross-classifi­
fication table contains at most one nonzero Psb. 

(v) In the case of statistical independence ).b, when determinate, is 
zero. The converse need not hold: ).b may be zero without sta­
tistical independence holding. 

(vi) ).b is unchanged by permutation of rows or columns. 

That ).b may be zero without statistical independence holding may 
be considered by some as a disadvantage of this measure. We feel, 
however, that this is not the case, for ).b is constructed specifically to 
measure association in a restricted but definite sense, namely the pre­
dictive interpretation given. If there is no association in that sense, 
even though there is association in other senses, one would want Ab to 
be zero. Moreover, all the measures of association of which we know 
are subject to this kind of criticism in one form or another, and indeed 
it seems inevitable. To obtain a measure of association one must 
sharpen the definition of association, and this means that of the many 
vague intuitive notions of the concept some must be dropped. 

We may similarly define 

(10) 

L: Pmb - Pm· 
6 

). .. =-----
1 - P .... 

where 

(11) 

Pm· = Max P .. • 
II 

Pmb = Max Pab • 
II 

Thus A,. is the relative decrease in probability of error in guessing As as 
between Bb unknown and known. 

So far as we know, A,. and ).b were first suggested by Guttman ([4], 
Part I, 4), and our development of them is very similar to his. 

5.2. Symmetrical Optimal Prediction. Another Model of Activity 

In many cases the situation is symmetrical, and one may alter the 

12 
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model of activity as follows: an individual is chosen at random from 
the population and we are asked to guess his A class half the time (at 
random) and his B class half the time (at random) either given: 

1. No furtherinformation, or 
2. The class of the individual other than the one being guessed; that 

is the individual's A .. when we guess Bb and vice versa. 

In case 1 the probability of error is 1-!(P'm+Pm')' and in case 2 the 
probability of error is l-i( L .. p .. m + L: b Pmb). Hence we may consider 
the relative decrease in probability of error as we go from case 1 to 
case 2, and define the coefficient 

H L: P ..... + L: Pmb - P·m - Pm.] 
.. b 

X = --------------------------(12) 
1 - HP.m + Pm.) 

Some properties of X follow: 

(i) X is determinate except when the entire population lies in a 
single cell of the table. 

(ii) Otherwise the value of X is between 0 and 1 inclusive. 
(iii) X is 1 if and only if all the population is concentrated in cells no 

two of which are in the same row or column. 
(iv) X is 0 in the case of statistical independence, but the converse 

need not hold. 
(v) X is unchanged by permutations of rows or columns. 

(vi) X iies between x.. and Xb inclusive. 

The computation of x.., Xb, or X is extremely simple. Usually one is 
given the population, not in terms of the Pab'S but rather in terms of the 
numbers of individuals in each cell. Let 11 be the total number of indi­
viduals in the population, "ab = "Pab, "am = "Pam, lImb = "Pmb, and 80 on. 
Then 

(13) 

(14) 

(15) 

L: lIam - 11 .... 
d 

~=----
11-11.", 

L: 11mb - 11",. 
b 

X,. = ---------
11 - 11 .... 

L 11,. ... + L 11mb - "'m - II .... 
.. b 

X = ----------------------
211 - (11 .... + 11m.) 

13 
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5.3. An example 

The following table is taken from reference [7], p. 300, and originally 
was given by Ammon in "Zur Anthropologie der Badener." It deals 
with hair and eye color of males. The table is given in terms of the 
I'/Ib's. A 1, At, Aa are respectively Blue, Grey or Green, Brown; B t , B2, 
Ba, B, are respectively Fair, Brown, Black, Red. 

Eye 
Color 
Group 

A1 
A, 
As 

I V·b 

We have: 

Hair Color Group 

I 
B1 B2 Ba B. Va· 

1768 807 189 47 2811 
946 1387 746 53 3132 
115 438 288 16 857 

2829 2632 1223 116 v=6800 

1'1m = 1768 

V2m = 1387 

V3m = 438 

Vm1 = 1768 

Vm2 = 1387 

Vm3 = 746 

Vm4 = 53 

V.m = 2829 Vm. = 3132 

3,954 - 3,132 822 
X = = -- = .2241 

a 6,800 - 3,132 3,668 

3,593 - 2,829 764 
Xb = = -- = .1924 

6,800 - 2,829 3,971 

822 + 764 1,586 
X = = -- = .2076. 

3,668 + 3,971 7,639 

I 

(Quotients are given to four places.) The traditional measures of asso­
ciation have the following values: x2/1'=.1581, 0=.3695, T=.2541, 
Cramer's measure = .07905. 

This example appears as an illustration of the usual approach to 
measures of association in [7], a standard statistical reference work. 
It is not hard to think of interpretations or variations in which one 

14 
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of the A coefficients would be appropriate. For example, one might be 
studying the efficacy of an identification scheme for males in which 
hair color was given but not eye color. Another example might be in 
connection with a study of popular beliefs about the relationship be­
tween hair color and eye color. 

5.4. Weighting Columns or Rows 

In some cases, particularly when comparisons between different 
populations are important, the measures ha, Ab, or A may not be suit­
able, since they depend essentially on the marginal frequencies. To 
put this in terms of the model of activity: in some cases we do not want to 
think of choosing an individual from the actual population at hand in 
a random way, but rather from some other population which is related 
to the actual popUlation in terms of conditional frequencies. 

This point is stressed by Yule in reference [15] and is illustrated by 
the kind of medical example3 given there. Suppose that we are con­
cerned with the effects of a medical treatment on persons contracting 
an often fatal disease. Very large samples from two different hospitals 
are available, giving the following Pab tables: 

Treated 
Not treated 

Total 

Hospital I 
Lived Died Total 

.84 .04 I .88 

.03 .09 .12 

.87 .13 1.00 

Hospital II 
Lived Died Total 

.42 

.14 

.56 

.02 

.42 

.44 

.44 

.56 

1.00 

Here the A classes are Treated or Not-treated, and the B classes Lived 
or Died. The given numbers are p's and marginal p's. 

We are interested in the association between treatment and life, and 
might conclude that Ab would be an appropriate measure of this. We 
find 

Ab for Hospital I = 
.93 - .87 

.13 

.84 - .56 
Ab for Hospital II = ---­

.44 

.462 

.636 . 

I We do not wish to suggest by this example that },.b is necessarily appropriate as a measure of 
aesociation between treatment and cure. A very interesting discussion of this medical case has been 
given by Greenwood and Yule l3J who bring out many difficulties and suggest various viewpoints. 
Another interesting paper on the medical 2 X2 table is that of Youden [14J. 

15 
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Yet the conditional probabilities of life, given treatIIlent (nontreat­
ment) , are exactly the same for both hospitals, namely .955 (.250). 
The reason that the conditional probabilities are the same while the 
>'b values are different is, of course, that the two hospitals treated very 
different proportions of their patients. And the proportions treated 
were probably determined by factors having nothing to do with 'in­
herent' association between treatment and cure. 

It may seem reasonable in such a case as this to replace our model of 
activity by one in which an individual is drawn from the population so 
that the probability of his being in any given Aa is exactly l/a, i.e., so 
that all A classes are equiprobable; and with conditional B class prob­
abilities equal to those of the original population. That is to say, it 
may seem reasonable to replace the quantities Pab by the quantities 

(16) 
1 Pob 

a Pa' 

and use this as the population to which >'b is applied. We may thus de­
fine, in terms of the conditional probabilities given A o, 

1 "Pam 1 " Pub -£...---Max£...-
a 0 Pa' a b a Pa' 

(17) >..* = 
1 Pub 

I--Max L-
a 0 a Pa' 

If we do this in the present example, we get, of course, the same al­
tered P table for both hospitals 

and in both cases 

.477 .023 .500 

.125 .375 .500 

.602 .398 1.00 

.250 
>..* = - = .628 . 

. 398 

An analogous procedure could be used to define >-0* and >.*. Note also 

16 
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that other 'artificial' marginal p's besides .5 could be used if appropri­
ate. Yule [15] suggests as a desideratum for coefficients of association 
their invariance under transformations on the {Pab} matrix of form 

P"b ~ 8"tbPab, 8", tb > 0; a = 1, ... ,0:; b = 1, ... , fJ. 

Such a transformation may readily be found (at least when no Pab=O) 
to make all four marginals of a two by two table equal to .5. In 
this connection, we refer to a recent article by Pompilj [10] in which 
such transformations are carefully discussed. 

All further measures may be considered for unweighted or weighted 
marginal proportions, whichever are appropriate. 

6. MEASURES BASED UPON OPTIMAL PREDICTION OF ORDER 

6.1. Preliminaries 

Heretofore we have considered measures of association suitable for 
the unordered case, that is, measures which do not change if the 
columns (rows) are permuted. Now we shall suggest a measure suit­
able for the ordered case. Suppose that the situation is of the following 
kind: 

(i) Two polytomies, A and B. 
(ii) No relevant underlying continua. 

(iii) Directed ordering is of interest. 
(iv) The two polytomies appear symmetrically. 

By (iii) we mean that we wish to distinguish, in the 3 X3 case between, 
for example, 

pn 0 

I 
0 

0 P22 0 I 
0 0 I Pss 

o , 0 I -0-,I-P-22 -1-0-1 

PSl 0 0 

Pl3 

and 

calling the first of these complete association and the second complete 
counterassociation. We may wish to make the convention that in these 
two cases the proposed measure should take the values + 1 and - 1 
respectively. If the sense or direction of order is irrelevant we can, for 
example, simply take the absolute value of a measure appropriate to 
directed ordering. 

17 



748 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 19M 

There are vaguenesses in the idea of complete ordered association. 
For example, everyone would probably agree that the following case 
is one of complete association: 

0 0 0 I 
P21 0 0 

0 I 
P32 0 

I 

The following situation is not so clear: 

Pll 0 0 

P21 P22 0 

0 P32 P33 

As before, the procedure we shall adopt toward this and toward more 
complex questions is to base the measure of association on a probabilis­
tic model of activity which often may be appropriate and typical. 

6.2. A Proposed Measure 

Our proposed model will now be described. Suppose that two individ­
uals are taken independently and at random from the population 
(technically with replacement, but this is unimportant for large popu­
lations). Each falls into some (Aa , Bb) cell. Let us say that the first falls 
in the (A!" B~l) ceil, and the second in the (A~2' B~I) cell. (Underlined 
letters denote random variables.) !!. (i= 1,2) takes values from 1 to a; 
b. (i = 1, 2) takes values from 1 to {3. 

If there is independence, one expects that the order of the a's has 
no connection with the order of the !!.'s. If there is high association one 
expects that the order of the a's would generally be the same as that of 
the !!:s. If there is high counterassociation one expects that the orders 
would generally be different. 

Let us therefore ask about the probabilities for like and unlike or-

18 
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ders. In order to avoid ambiguity, these probabilities will be taken 
conditionally on the absence of ties. Set 

(18) II. = Pr {~l < ~ and ~l < ~2; or al > ~ and ~l > ~2} 
(19) IId = Pr {~l < ~2 and ~l > ~2; or al > a2 and ~l < ~2} 
(20) IIt = Pr {~l = ~ or ~1 = ~} . 

Then the conditional probability of like orders given no ties is II./ (1-II t ) 

and the conditional probability of unlike orders given no ties is 
IId/ (1- IIt). Of course, the sum of these two quantities is one. 

A possible measure of association would then be II./(I-IIt), but it 
is a bit more convenient to look at the following quantity: 

(21) 
II, - IId 

"{= 
1 - ITt 

or the difference between the conditional probabilities of like and unlike 
orders. In other words 'Y tells us how much more probable it is to get 
like than unlike orders in the two classifications, when two individuals 
are chosen at random from the population. 

Since II. + II d = 1 - IIt , we may write 'Y as 

(22) 
2II, - 1 + IIt 

'Y= 
1 - IIt 

which is convenient for computation, using the easily checked relation­
ships 

(23) 

(24) 

II. = 2 L: L: Pab{ L L Pa'b'} 
a b a'>a b'>b 

a a 

Some important properties of 'Y follow: 

(i) 'Y is indeterminate if the popUlation is entirely in a single 
row or column of the cross-classification table. 

(ii) 'Y is 1 if the population is concentrated in an upper-left to 
lower-right diagonal of the cross-classification table. 'Y is -1 
if the population is concentrated in a lower-left to upper-right 
diagonal of the table. 

(iii) 'Y is 0 in the case of independence, but the converse need not 
hold except in the 2 X2 case. An example of nonindependence 
with 'Y=O is 

19 
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.2 0 .2 

0 .2 0 

.2 0 .2 

For tables up to 5 X5 with p's expressed to two decimal places com­
putation ~s fairly rapid. II many tables of the same size are at hand a 
cardboard template would be convenient. A check on n. is to recom­
pute using inverted ordering in both dimensions. 'Y may be rewritten 
in terms of the II'S by putting ""ab" for "Pab," etc., and replacing "I" in 
(21) and (22) by 'V-." 

In the 2 X2 case we find that 

(25) 
PUP22 - PI2P21 

'Y= 
PllP22 + Pl2P21 

This is the same as Yule's coefficient of association Q mentioned in 
Section 4. In this case 'Y = ± 1 if anyone cell is empty. For example, 

pu 0 

P21 I P22 

gives rise to 'Y = 1 always. 
Any case of the following forms will give rise to 'Y = 1, since a con­

flict in order is impossible: 

Pn Pl2 0 Pn I 
0 0 

I 
0 P22 P23 P21 0 0 

0 0 I P33 
I 

P31 P32 P33 
I 

The right-hand table might be thought of as a case of "complet.e curvi­
linear association." 

Stuart [11], starting from a suggestion by Kendall [6], has proposed 
a measure of association in the ordered case much like 'Y. Stuart's 
measure, which he calls T. is, in our notation, 

20 
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II, - IId 
Tc = 

(m - 1)/m 

where m=Min (a, fJ). The term (m-l)/m is introduced in order that 
T. may attain, or nearly attain, the absolute value 1 when the entire 
population lies in a longest diagonal of the table. Stuart develops his 
measure by considering a two-way ordered classification table as two 
rankings of a population, where many ties appear in one or both rank­
ings as two individuals of the population fall in the same column or row 
or both. Then each ordered pair of individuals is assigned a score with 
respect to each ranking: 0 if there is a tie, or ± 1 as one or the other is 
ranked higher. Finally the product-moment correlation coefficient is 
formally computed with these scores, and the norming factor is intro­
duced. 

Thus, our development of 'Y is seen to give another and more natura) 
interpretation for the numerator of Tc: it is the probability of like order 
less the probability of unlike order when two individuals are chosen at 
random. In addition the form in which Tc is given ahove, together with 
(23) and (24), suggests a computation procedure somewhat different 
than that of [11]. 

6.3. An Example 

Whelpton, Kaiser, and others [17] have investigated in great detail 
relationships between human fertility and a number of social and psy­
chological characteristics of married couples. The analyses resulting 
from these investigations are replete with cross-classification tables, 
together with accompanying verbal explanations and recapitulations. 
Numerical indexes of association appear to have been used rarely, if at 
all, in this work. 

We wish to examine briefly one of these cross-classification tables 
as an example of a cross-classification with an order in both classifica­
tions. This examination should be construed neither as approval nor 
criticism of the methodology used in the studies edited by Whelpton 
and Kaiser, for this would not be appropriate here. (The reader may 
refer to [18] and [19] for critical reviews.) However, we do feel that 
the use of summarizing indexes of association in a study of t.his kind 
may well be worth while for at least two reasons. One is that the 
reader finds it very difficult t.o obtain a bird's-eye view of the extensive 
numerical material without depending almost wholly on the author's 
own conclusions. Second, the use of indexes would mitigate the criticism 
that the author, consciously or not, selects from his numerical data 
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those comparisons that are in line with his a priori beliefs. Needless to 
say, an index of a:3sociation is recommended by these arguments only 
if it has some reasonable interpretation. 

The particular table we wish to consider follows, in terms of numbers 
of married couples. It refers to a rather special, but well defined, popu­
lation: white Protestant married couples living in Indianapolis, mar­
ried in 1927, 1928, or 1929, and so on. The data were obtained by strati­
fied sampling, with strata based on numbers of live births. However, 
for present purposes we do not consider any questions of sampling, 
response error, specification of population, etc. The table is condensed 
from a more detailed cross-classifiration given in [17], vol. 2, pp. 286, 
389, and 402. Further, we shall not define the fertility-planning cate­
gories that follow, but merely indicate the order. 

CROSS-CLASSIFICATION BETWEEN EDUCATIONAL LEVEL OF 
WIFE AND FEllTlLITY-PLANNING STATUS OF COUPLE. 

SOURCE [17], VOL. 2. NUMBERS Il'I BODY 
OF TABLE ARE FREQUENCIES 

Fertility-planning status of couple 

ABC D i 
Highest level Most I 

of formal effective Least ,I 

education planning effective How 
of wife 1 of number planning I totals 

I and spuc- of children I 
ing of i 

! children i 

--------------------·--1-----
one year college I 
or more 102 

3 or 4 years high 
school 191 

35 

80 

68 34 239 

215 122 608 

less than 3 years, 

high school 1'. __ 1_1_0 ____ 9_0 ____ 16_8 ____ 22_3 __ 
1
. __ 5_9_1 __ 

1 

Column totals 403 205 451 379 1438 

This is clearly a case where there is relevant order in both classifi­
cations. We may first compute II. as follows (schematically): 
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2 
IT. = -- [102(80 + 90 + 215 + 168 + 122 + 223) 

(1438)2 

+ 35(215 + 168 + 122 + 223) + ... + 215 (223)] 

2 
--- [102 X 898 + 35 X 728 + ... + 215 X 223] 
(1438)2 

2 X 311,632 
---- = .301. 

2,067,84-4 

753 

This means that if we pick two couples at random from those included 
in the table, the probability is .301 that they are not tied in either 
classification and that they fall in the same order for both classifications 
(e.g., if educational level of wife is greater for first couple chosen, then 
effectiveness of fertility planning is also greater). 

Similarly we compute that ITd= .163. This is the probability of no 
ties and different orders. Finally ITt, the probability of a tie in at least 
one classification, is .536. Note that IT.+ITd+IT t = 1.000. 

The conditional probability of like order, given no tie, is IT./ (1- ITt) 
= .30l/.464 = .649; and the conditional probability of unlike order is 
.163/.464 = .351. Clearly there is a greater chance of like order than of 
unlike order, and tIllS means positive association, if the operational 
model is a reasonable one. To measure the magnitude of this association 
we may use 'Y, which here is equal to 

.301 - .163 
----=.298 . 

.464 

This is the difference between the conditional probabilities of like and 
unlike order, given no ties. 

It might be thought that one should look, not at the actual popula­
tion above, but at a related population with equal row totals and with 
the same relative frequencies within each row. That is, we might wish 
to work with a derived population within which one-third of the wives 
lie in each education category, but which is otherwise the same. This 
derived population is readily obtained (in terms of its Pab'S) by dividing 
each frequency in the above table by three times the total in its row. 
Very minor adjustments were made because of rounding, in order that 
the over-all sum be 1.000. For the same reason, the row totals are not 
exactly equal. 
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CROSS-CLASSIFICATION BETWEEN EDUCATIONAL LEVEL OF 
WIFE AND FERTILITY-PLANNING STATUS OF COUPLE. DE­
RIVED FROM PRIOR TABLE BY ADJUSTMENT TO MAKE ROW 

TOTALS EQUAL. NUMBERS IN BODY OF TABLE 
ARE RELATIVE FREQUENCIES (Pob'S). 

Fertility-planning status of couple 

A B C D I 
Highest level Most 

I of formal effective Least 
education planning effective 

of wife of number planning 
and spac- of children 

ing of 
children 

one year college 
or more .142 .049 .095 .047 

3 or 4 years high 
school .105 .044 .118 .067 

less than 3 years 
high school .062 .050 .095 .126 

Row 
totals 

.333 

.334 

.333 

Column tot.als I .309 .143 .308 .240 1.000 

For this table we find II. = .325, IId = .170, II t = .505. 
Hence II./(1-IIt) =.657, IId/(1-IIt)=.343,and 'Y=.314. There is 

no great difference between the original and the adjusted table in re­
gard to association as measured by probabilities of like and unlike 
order. 

Alternatively, one might wish to adjust the tabular entries so that 
column totals are equal, or one might attempt to adjust the entries so 
that the row totals are equal and the column entries are equal. 

7. THE GENERATION OF MEASURES BY THE INTRODUCTION 

OF LOSS FUNCTIONS 

7.1. Models Based on Loss Functions 

Instead of obtaining a measure as a natural function of probabilities 
in the context of a model of predictive behavior, one can more generally 
employ loss functions. In such a way, one can even artificially generate 
the conventional measures described in Section 4. 
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7.2. Loss Functions and the A Measures 

In the context of Section 5.1 let us suppose that in guessing an indi­
vidual's B class one incurs a loss L(b1, b2), where B b'l is the true B class 
and B bt is the guessed one. Consider first guessing Bb given no informa­
tion. Then a scheme of guessing Bb with probability Pb(Pb ~ 0, LPb = 1) 
leads to an average loss of L L p.1>] Pb, L(b1, b2). It is easily seen that 

bl b2 

this average is minimized by guessing that B bt for which I: p.~(b, b2) 
b 

is a minimum, or if there are two or more minima by guessing anyone 
of them. Let h be anyone of these b2's, so that the minimum average 
loss is L P.b L(b, bL ). 

b 

On the other hand if the individual's A class is known to be All, 
the best scheme of guessing is to select b2 to minimize L: Pab L(b, b2). 

b 

Let blA be such a minimizing b2 ; then the minimum average loss when 
A .. is known is L: (Pab!Pa') L(b, bLo,), and the over-all minimum aver­

b 

age loss with A.a's known is L L Pab L(b. bLa). 
a b 

The decrease in loss as we pass from the first case to the second is 
therefore 

(26) L p.bL(b, bL) - L L PabL(b, bLa). 
b a b 

It would be reasonable to norm this by division by the first term, 
L P·b L(b, h), to obtain a generalization of Ab. 
b 

Notice that if L(b1, b2) is 0 when b1 =b2 and 1 when bi ¢b2, we obtain 
exactly Ab. Analogous procedures give us generalizations of A.. a,nd A. 
A slight extension of the procednre, permitting the loss to depend on 
the true A class as well as the true and guessed B classes, gives a gen­
eralization of Ab*. 

7.3. The Conventional Measures in Terms of Loss Functions 

Suppose, instead of predicting the classes of individuals, we are asked 
to determine the values Pab when only the Pa. and p.b are known. In the 
case of independence, these Pab are Pa. P.b. In the more general case, the 
difference between Pab and Pa. P.b may be thought of as the amount of 
error made by assuming independence, If the loss is proportional to 
the square of the error, inversely proportional to the estimate Pa. P.b .• 
and additive, we have 
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where the k.t's are given constants. For comparison with standard 
chi-square, express this in terms of the lIab'S 

(28) 

( ",,0".,,)2 11",,--­
II 

LLk",,----
" " lIa ollo " 

and finally set k... = II to obtain just the chi-square statistic. 
Although this procedure and loss function seem to us rather arti­

ficial, they do give one way of motivating the chi-square statistic as a 
measure of association. 

8. RELIABILITY MODELS 

8.1. Generalitie8 
Consider now cases in which the classes are the 8ame for the two poly­

tomies, so that we deal with an aXa table, but differ in that assign­
ment to class depends on which of two methods of assignment is used. 
Thus we might for example consider two psychological tests both of 
which classify deranged individuals as to the type of mental disorder 
from which they suffer. Or again, we might consider two observers 
taking part in a sociological experiment wherein they independently 
and subjectively rate each child in a group of children on a five point 
Beale for degree of cooperation. 

One is often concerned in such cases with the degree to which the 
two methods of assignment to class agree with each other. In the case 
of the psychological tests, for example, one of the tests might be a well 
established standard procedure and the other might be a more easily 
applied variant under consideration as a substitute. The psychologist 
would probably only consider the variant seriously if it gave the same 
answers as the standard test often enough in some sense which he would 
have to explicate. In the case of the two observers, the problem might 
be whether the kind of subjective ratings given by trained observers 
in that context are similar enough to warrant the use of such subjective 
ratings at all. 

As before we shall not consider here sampling problems, but rather 
shall suppose the population Pab'S known. The several distinctions and 
conventions of Sections 2 and 3 apply here of course, but the measures 
suggested in Sections 5 and 6 do not seem appropriate in this reliability 
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context. One reason is that the classes are the same for both polytomies. 
This means that even in the unordered case we do not want a measure 
which is invariant under interchange of rows and interchange of col­
umns unless the two interchanges are the same. 

An obvious measure of reliability in such a study is just LPaa, 
II 

the probability of agreement. However, we shall also consider some 
other possibilities. 

8.2. A M ensure of Reliability in the Unordered Case 

The measure we shall now propose might be appropriate under the 
following conditions: 

(i) Two polytomies are the same, but arise from different methods 
of assignment to class. 

(U) No relevant underlying continua. 
(iii) No relevant ordering. 
(iv) Our interest in reliability is symmetrical as between the two 

polytomies. 

A modal class over both classifications is any A,,( = BII) such that 
PII.+P.a~Pa'.+P.a' for all a'. It is simplest to suppose that there is a 
unique modal class, but if there are more any can be chosen. Denote by 
PM. and p.},[ the two marginal proportions corresponding to the modal 
class. 

A modal class can be given the following interpretation: choose an 
individual at random from the population and pick one of the two 
methods of assignment by flipping a fair coin. What is the long-run 
best guess beforehand of how the chosen method will classify the chosen 
individual? The answer is: the modal class; and if the modal class is 
Aa, then the probability of a correct guess is !(Pa. +P·a) = !(PM. +p.lIf). 

In so far as there iR good reliability between the two methods of as­
signment, one could make a better guess if one knew how the other 
method of assignment would classify the individual, and then followed 
the rule of guessing the same class for the method being predicted. 
The probability of a correct guess would then be LPaa. Thus as we go 
from the no information situation to the other-method-known situa­
tion, the probability of error decreases by LPaa-!(PM.+p.M). This 
quantity may vary from -! to 1- (1/ a). It takes the value - t when 
all the diagonal Paa'S are zero and the modal probability, PM. +P.M 

is 1. It takes the value 1- (1/ a) when the two methods always agree 
and each category is equi-probable. 
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To get a measure we should alter the apove quantity, since a suf­
ficiently large PGG for some a will make the above quantity low even 
though LpGG is nearly 1. It seems reasonable to norm by division by 
the probability of error given no information, that is by 1-t(PM.+p.M). 
Hence we propose the measure 

L PGG - t(PM. + P.M) 
(29) >'r = . 

1 - HpM. + p.M) 

This may be interpreted as the relative decrease in error probability as 
we go from the no information situation to the other-method-known 
situation. 

* The measure >'. can take values from -1 to 1. It takes the value -1 
when all the diagonal PGG's are zero and the modal probability, PM. +P.M 
is 1. It takes the value 1 when the two methods always agree. >'. is 
indeterminate only when both methods always give only one and the 
same class. In the case of independence >'. assumes no particular value. 
This characteristic might be considered a disadvantage, but it seems 
to us that an index of this kind would only be used where there is 
known to be dependence between the methods, so that misbehavior 
of the index for independence is not important. 

8.3. Reliability in the Ordered Ca8e 

For the case in which the classes are ordered, but a meaningful 
metric is absent, we have been unable to find a measure better than 
one of the following kind: 

(30a) 

(30b) 

(30c) 

a 

L Paa (as suggested in Section 8.1) 

L Pab 
la-bl:ii1 

L Pd, 
lo-b]:iii2 

that is, the only reasonable measures we know of are those that are 
based upon either the probability of agreement, the probability of 
agreement to within one neighboring class, two neighboring classes, 
and so on. If desired one could weight these probabilities when classi­
fication in a neighboring class is not as desirable as in the same class. 
Thus one might consider something like LPaa+! LPab or its obvious 

1..--1>1-1 

variants. These measures may also be justified easily by loss-function 
arguments. 
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9. PROPORTIONAL PREDICTION 

Instead of basing a measure of association on optimal prediction 
one might consider measures based upon a prediction method which 
reconstructs the population, in a sense to be described. The use of such 
a measure was suggested to us by W. Allen Wallis. For simplicity, we 
restrict ourselves to the asymmetric situation of Section 5.1 where 
Xi was constructed. Of course one could apply the same approach in 
other situations. 

Our model of activity, as before, is the following: An individual is 
chosen at random from the population and we are asked to guess his 
B class either (1) given no information or (2) given his A class. 

Optimal guessing will lead to a definite B class in case (1) and to 8 

definite B class for each A class in case (2) (except that in the case of 
tied p.i'S or Pab'S we have some choice). While such optimal guessing 
leads to the lowest average frequency of error, the resulting distribu­
tion of guessed classes will usually be very different from the original 
distribution in the population. For some purposes this might be unde­
sirable and one is led to the following model of activity: 

Case 1. Guess Bl with probability P'l, B2 with probability p.t, ...• 
BfJ with probability p.fJ. 

Case 2. Guess Bl with probability PaI/ptJ. (the conditional probabil­
ity of Bl given AtJ), B2 with probability PtJ2/ PtJ., ••• , B~ 
with probability PafJ/ Po·. 

In each case the guessing is to proceed by throwing a ~-sided die whose 
bth side appears with probability P-b (case 1) or Pab/Pa' (case 2). This 
may be accomplished using a table of "random numbers." If we make 
many such guesses independently it is plain that we shall approximately 
reconstruct the marginal distribution of the Bb'S (case 1) and the joint 
distribution of the (Aa, Bb)'s (case 2). 

The long-run proportion of correct predictions in case (1) will he 
fJ a (J 

L: p.b2, and in case (2) it will be L L PtJb2/Pa •• Hence the relative 
b-l a-I b-I 
decrease in the proportion of incorrect predictions as we go from 
case (1) to case (2) is 

L: L: Pab2/Pa' - L p.b2 

tJ b b 
(31) Tb = -----==------

1 - L: p.b2 

b 

which can be readily expressed in the chi-square-like form 
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(32) 

L L (Pab - Pa.P·b)2 

a b Pa· 
'Tb = -----=,..-----

1 - L p.b 2 

b 

It is clear that Tb takes values between 0 and 1; it is 0 if and only if 
there is independence, and 1 if and only if knowledge of Au completely 
determines Bb• Finally Tb is indeterminate if and only if both independ­
ence and determinism simultaneously hold, that is if all P.b'S but one 
are zero. 

10. ASSOCIATION WITH A PARTICULAR CATEGORY 

A group of modifications of many of the preceding measures arises 
from the observation that there may be little association between the 
A and B polytomies in general, but if an individual is in a particular A 
class it may be easy to predict his B class. Suppose, then, that we want 
the association between Aao, a specific A class, and the B polytomy. 
One need only condense all the Aa rows where a~ao into a single row, 
thus obtaining a 2 X{3 table, and apply whatever measure of association 
is thought appropriate. The table will have this appearance. 

I 
Bl B2 B[1 · .. 

Aao Paol Pao2 I 
· .. I Pao{J 

Aa (a~ao) 
II P·l-Paol P·2-Pao2 I 

· .. I P'{J-PaoiJ 

We are indebted to L. L. Thurstone for pointing out to us the impor­
tance of this modification. 

11. PARTIAL ASSOCIATION 

When there are more than two polytomies it is natural to think of 
partial association between two of them with the effect of the others 
averaged out in some sense. Two sllch measures of partial association 
will be suggested here for the asymmetrical case and three polytomies. 
The viewpoint will be that of optimal prediction. Analogous symmet­
rical measures may be readily obtained, and the restriction to three 
polytomies is purely for convenience of notation. The first two poly­
tomies will be denoted as before; the third will consist of the classifica­
tion Cl, C2, ••• I C'Y' The proportion of the population in Au, Bb, and 
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Cc is Pabc, and dots will be used to denote marginal values in the con­
ventional way. The proposed measures will be for partial association 
between the A and B polytomies 'averaged' over the C polytomy. (Do 
not confuse the integer 'Y used here with the index 'Y of Section 6.) 

11.1. Simple Average of X6 

For fixed Ce, we have a conditional A XB double polytomy with 
relative frequencies Pab./ p .. c. Hence we can compute Xb for each such 
table-call it Xb(c) to show dependence on c. Now it might seem natural 
to average these values with weights equal to the marginal relative 
frequencies of the C classificat.ions. That is, we suggest 

"Y 

(33) Xb(A, B I C) = :E p .. cXb(C). __ I 

11.2. Measure Based Directly on Probabilities of Error 

It seems to us somewhat better, from the viewpoint of interpreta­
tion, to proceed as follows. For given Cc if we predict B classes opti­
mally on the basis of no further information, the probability of error is 
1-(Maxb p.bc)!P .. e; whereas if we know the A class the probability of 
error is 1 - ( LII Maxb Pabe) / p .. c. Hence, if we are given individuals 
from the population at random and always told their C class, the 
probability of error in optimal guessing if we know nothing more is 
1- :Ee Maxb p.be; whereas if we also know the A class the probability is 
1- ,:Ee :EaMaXb Pabe. Thus the relative decrease in probability of error 
is 

(34) 

:E L MaxPllbe - I: Maxp.bc 
cab b 

1 - L MaXp.bc 
b 

which might often be a satisfactory measure of partial association. 

12. MULTIPLE ASSOCIATION 

When there are more than two polytomies one may well be interested 
in the multiple association between one of them and all the others. 
One simple way of handling this in the unordered case will be described 
here for three polytomies A, B, and C as defined in Section 11. We sup­
pose that the multiple association between A and B-together-with-C 
is of interest. Simply form a two-way table whose rows represent the A 
polytomy and whose columns represent all combinations B b, C. and 
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then apply the appropriate two-polytomy measure. The table will have 
this appearance: 

BIGI BIGI BIG., B 2GI B 2G., B{JG., 
------------------= 

Al Pl11 Pm Pn., Pl21 PI!., Pl{J., 
--------------------

As Pm P2l2 P21., P22l P22., P2{J., 
--------------------

--------- ----------
Aa Pan Pa12 Pal., Patl Pa2., Pa{J., 

Note that this procedure does not take the BXG association into ac­
count. There is a rough analogy here with the motivation for the stand­
ard multiple correlation coefficient of normal theory. The standard 
multiple correlation coefficient may be (and often is) motivated by de­
fining it as the maximum correlation coefficient obtainable between a 
given variate and linear combinations of the other variates. That is, it is 
a measure of association between a given variate and the best estimate 
(in a certain sense) of that variate based upon all the other variates. 
It is true that the standard multiple correlation coefficient may be ex­
pressed as a function of the several ordinary bivariate correlation coef­
ficients, but in a sense this is a consequence of the strong structural as­
sumption of multivariate normality. 

13. SAMPLING PROBLEMS 

The discussion thus far has been in terms of known populations, 
whereas in practice one generally deals with a sample from an unknown 
population. One then asks, given a formal measure of association, how 
to estimate its value, how to test hypotheses about it, and so on. 

Exact sampling theory for estimators from cross-classification 
tables is difficult to work with. However, the asymptotic theory is 
reasonably manageable, at least in some cases. We intend to discuss 
this in another paper, where we shall state some of the asymptotic 
distributions and say what we can of their value as approximations. 
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a. CONCLUDING REMARKS 

The aim of this paper has been to argue that measures of association 
should not be taken blindly from the handiest statistics textbook, but 
rather should be carefully constructed in a manner appropriate to the 
problem at hand. To emphasize and illustrate this argument we have 
described a number of such measures which we feel might be useful in 
several situations. While we naturally take a friendly view towards 
these measures, we can hardly claim that they are more than examples. 

This methodologically neutral position should not be carried to an 
extreme. It would be ridiculous to ask each empirical scientist in each 
separate study to forge afresh new statistical tools. The artist cannot 
paint many pictures if he must spend most of his time mixing pigments. 
Our belief is that each scientific area that has use for measures of asso­
ciation should, after appropriate argument and trial,' settle down on 
those measures most useful for its needs. 
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Our earlier discussion of measures of association for cross classifica­
tions [66) is extended in two ways. First, a number of supplementary 
remarks to [66) are made, including the presentation of some new meas­
ures. Second, historical and bibliographical material beyond that in [66) 
is critically surveyed; this includes discussion of early work in America 
by Doolittle and Peirce, early work in Europe by Korosy, Benini, Lipps, 
Deuchler and Gini, more recent work based on Shannon-Wiener in­
formation, association measures based on latent structure, and relevant 
material in the literatures of meteorology, ecology, sociology, and an­
thropology. New expressions are given for some of the earlier measures 
of association. 

1. INTRODUCTION AND SUMMARY 

THIS paper has two purposes. First, we wish to present a supplementary dis­
cussion to problems considered in our first paper on cross classifications 

[66], including presentation of some new measures; this is Section 2 of the 
present paper. Second, we wish to extend the brief historical and bibliographi­
cal remarks in [66] to include a number of publications, many of them little­
known, that may be of interest to those working with cross classifications; this 
is done in Sections 3 and 4 of the present paper. 

We have in preparation a paper on approximate distributions for the sample 
analogues of the measures of association described in [66], but it seems de­
sirable to bring the present remarks, virtually none of which deal with sam­
pling distributions, to the reader's attention in a separate report. 

The literature on measures of association for cross classifications is vast, it is 
poorly integrated, and seldom in this literature are meaningful interpretations 
of measures adduced. One finds the same questions discussed in papers on 
meteorology, anthropology, ecology, sociology, etc. with hardly any cross 
references and with considerable duplication. In surveying this literature, we 
have been selective, although the length of this paper may not suggest it. 
Discussion of a measure of association here does not mean ipso facto that it 
has an operational interpretation, a very desirable characteristic for which we 
argued in [66], but may simply reflect some other interesting aspect of the 
measure, for example its historical role. 

One may organize the historical and bibliographical material in various ways, 
classifying by date, by type of measure, by substantive field, and so on. We 
have used a gross chronological division, but within it we have classified in 
several ways, as seemed most appropriate. Material from [66] has not been 
repeated here. 
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2. SUPPLEMENTARY DISCUSSION TO PRIOR PAPER 

2.1. Cross classifications in which the diagonal is not of interest. Herbert Gold­
hamer (Rand Corporation) has been concerned with measuring association for 
aXa tables where the classes are the same for the two polytomies, as in Section 
8 of [66], but where the diagonal entries are of little or no interest. For exam­
ple, one might tabulate occupation of father against occupation of son, and 
investigate the association between the two occupations only in the 'off-diagonal 
subpopulation where they are not the same. Thus the situation, while similar 
to that of reliability measures, as in Section 8 of [66], differs from it in that the 
diagonal entries must not playa part; and hence Ar of [66] would not be suita­
ble. 

It seems to us that reasonable measures of association in this situation would 
be provided by Aa , Ab, or A in the unordered case, and by 'Y in the ordered case, 
when these measures are applied to the conditional classification with all 
Paa = O. Hence, replacing Pab, for a,= b, by Pab/ (1- L:Paa), and taking all Paa = 0, 
we would get a new table for which the A'S or 'Y would have direct conditional 
interpretations. This kind of simple modification is often easy to make for 
measures with operational interpretations, whereas it is not at all clear how 
one might usefully alter a chi-square-like measure to fit Goldhamer's problem. 
A similar point is made in another context in Section 4.13. 

2.2. A relation between the A measures and Yule's Y. Suppose that in the 
2X2 case we make a transformation of form Pab~satbPab so that all the marginals 
become .5 [66, Sec. 5]. Then, for the altered table, Aa=Ab=A, and all three are 
equal to the absolute value of Y, where 

y= v~- vP;; 
V PnP22 + V P12P21 

(p's of original table) 

as described in Section 4 of [66]. The actual transformation is that for which 

(SI: S2: tl: t2) = (v P21P22: V PnP12: V P12P22: V Pnp21). 

Thus we have another formal identity in the 2X2 case between a classical meas­
ure of association and one with an operational interpretation. 

2.3. Symmetrical variant of proportional prediction. In Section 9 of [66], we 
mentioned a measure of association based, not on optimal prediction, but on 
proportional prediction in a manner there explained. If one predicts polytomy 
B half the time and polytomy A the other half, always using proportional 
prediction, then the relative decrease in the proportion of incorrect predictions, 
as one goes from the nothing-given situation to the other-polytomy-category­
given situation, is 
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In the 2 X 2 case this quantity, together with the asymmetrical 'Tb of [66], re­
duces to 

(PllP22 - P12P21) 2 

Pt·P2·P·tp·2 

or <1>2, the mean square contingency. 
2.4. Association with a particular set of categories. In Section 10 of [66], we 

described a simple way to consider association between a particular A category 
and the B polytomy; namely coalescence of the aXfJ table into a 2XfJ table 
whose rows correspond to the particular A category and its negation respec­
tively. A similar suggestion was made by Karl Pearson in 1906 [112]. 

We now discuss association between a particular set of A categories and the 
B polytomy. Suppose that we want to consider the association between 
Aa1, Aat, . . . , Aa., a specific set of A classes, and the B polytomy. One possible 
approach is to condense all the Aa rows that are not in the specific set of A 
classes (i.e., all the Aa rows where a is not equal to any ak, k = 1, 2, ... , s) 
into a single row, thus obtaining an (s+l) XfJ table, and then apply whatever 
measure of association is thought appropriate. This approach might be used 
if the entire original population is of interest, and we are only concerned with 
association for the specific set of A categories and their pooled remainder. If, 
however, the population of interest consists only of those individuals who are 
in the specific set of A categories, Aall Aau ... , A a., (s;::::2), then we would 
apply whatever measures of association are thought appropriate (e.g., Aa, Ab, A, 
'Y, etc.) to the conditional classification with Pab=O for all a that are not equal 
to any ak, k=O, 1, ... , s. That is, we would delete all rows except those cor­
responding to Aall . . ., Aa.. and in those rows we would replace Pab by 
Pab/:E~_t :Eg.t Pa"b. We would then have an sXfJ table, and the A'S or 'Y 
would have direct conditional interpretations. 

The association between a particular set of A categories and a particular 
set of B categories, or a particular set of combined (grouped) A categories and 
a particular set of combined B categories, can be treated in an analogous man­
ner. 

2.5. Comparison of degrees of association exhibited by two crOBS classifications. 
Sometimes one wishes to compare the degrees of associetion shown by two 
cross-classified populations. This question 'is particularly likely to arise when 
the two classifications are the same for both populations. It was discussed 
briefly on page 740 of [66]; a bit more detail may be of interest here. 

Suppose, for example, that we are considering two populations, each cross 
classified by the same pair of polytomies and such that Ab is the appropriate 
measure of association. That is, the relative decrease in probability of error 
for optimum prediction of column, as we go from the case of row unknown to 
that of row known, is the relevant population characteristic. Then the differ­
ence between the Ab'S of the two populations gives a simple comparison with a 
clear meaning. Sometimes the relative difference between the Ab'S might be of 
more interest. 
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If the pairs of classifications for the two populations are not identical, as 
will necessarily be the case when the two cross classification tables are of 
different sizes, the purpose of comparison may not be clear. However, the 
absolute or relative differences described above may still be used and have per­
fectly definite interpretations. Of course, the above comments are applicable, 
not only to Ab, but to any other measure of association that has an operational 
meaning. 

When we are concerned with sampling problems, the question may arise 
whether two sample values of Ab (say) from two different populations differ 
with statistical significance. This question, together with other questions relat­
ing to sampling, will be considered in a paper now in preparation. In that paper 
we shall also discuss the question of whether K sample values of Ab from K 
different populations (K~2) differ with statistical significance. 

2.6. A new measure of association in the latent structure context. Several meas­
ures of association discussed in Sections 3 and 4 are based upon probabilistic 
models of a latent structure nature. This kind of model is explained and dis­
cussed in Section 4.9, and there we suggest a new measure in addition to those 
already suggested by others. 

2.7. Two corrections. The second and third sentences of the second paragraph 
of [66], p. 758, are essentially correct, but may be misleading. It would have 
been clearer to have written 

It [AT] takes the value -1 if and only if (i) all PaJi'S not in the row or column of the 
modal class are zero, and (ii) P •• for the modal class is not one. It takes the value 1 if 
and only if (i) 2;p •• = 1 (i.e. the two methods always agree), and (ii) P •• for the modal 
class is not one. 

Formula (6) on p. 740 of [66] should have contained a radical in the de­
nominator, so that the correct formula is 

T = v[x2/ v]/v(a - 1)(,8 - 1). 

We thank Vernon Davies (Washington State) for calling this to our attention, 
and we apologize to him and to other readers for an erroneous corrigendum 
about this point on page 578 of the December 1957 issue of this Journal, 
in which a solidus was missing before the inner radical. 

3. WORK ON MEASURES OF ASSOCIATION IN THE LATE NINETEENTH AND 

EARLY TWENTIETH CENTURIES 

3.1. Doolittle, Peirce, and contemporary Americans; Koppen. In the 1880's, 
interest arose in American scientific circles regarding measures of association. 
Such eminent men as M. Hl. Doolittle, of Doolittle's method, and C. S. Peirce, 
the well-known logician and philosopher, took part in the discussion. 

Apparently it began with the publication [47] by J. P. Finley, Sergeant, 
Signal Corps, U.S.A., of his results in attempting to predict tornadoes. During 
four months of 1884, Finley predicted whether or not one or more tornadoes 
would occur in each of eighteen areas of the United States. The predictions 
generally covered certain eight-hour periods of the day. One of Finley's sum­
mary tables is given below as an example. 
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COMPARISON OF FINLEY TOm~'ADO PREDICTIONS AND 
OCCURRENCES, APRIL, 1884. SOURCE: [47, p. 85J 

TABLE SHOWS FREQUENCIES OF TIME PERIOD-GEOGRAPHICAL AREA 
COMIHNATIONS IN EACH CELL 

Occurrence 

Tornado No Tornado Totals 

Tornado 11 14 25 
Prediction 

No Tornado 3 906 909 

Totals 14 920 I 934 

Thus, for example, in 14 out of the 934 time period-geoegraphical area com­
binations considered, one or more tornadoes occurred; out of these 14, Finley 
predicted 11. Since Finley's predictions were correct in 917 out of 934 cases 
he gave himself a percentage score of 100 (917/934) =98.18 per cent.* Thus he 
used the diagonal sum mentioned in Section 8 of [66]. 

This score, as a measure of association between prediction and occurrence, 
is wholly inappropriate for Finley's study. A completely ignorant person could 
always predict "No Tornado" and easily attain scores equal to or greater than 
Finley's; in the above example, always predicting "No Tornado" would give 
rise to a score of 100(920/934) =98.50 per cent. (Of course it is clear that Finley 
did appreciably better than chance; the question is that of measuring his skill 
by a single number.) 

It was not long before Finley was taken to task. G. K. Gilbert [55] pointed 
out the fallacy and suggested another procedure, prefacing his suggestion, with 
commendable humility, in the following words: 

"It is easier to point out an error than to enunciate the truth; and in matters in­
volving the theory of probabilities the wisest are apt to go astray. The following sub­
stitute for Mr. Finley's analysis is therefore offered with great diffidence, and subject 
to correction by competent mathematicians." [55, p. 167] 

If Finley's table is written in terms of proportions rather than frequencies, 
and in the notation of [66], it is of form 

Occurrence 

Tornado No Tornado Total 

Tornado Pll P12 Pl' 

Prediction 
No Tornado P21 P22 P2' 

Total P'l P'I 1 

Gilbert suggests that a sensible index of prediction success would be the 
quantity 

* Finley actually obtained such percentage scores for each geographical area separately and then averaged the 
scores. For April the average was 98.51 per cent. 
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Pn - PI·P·I 
-----------------, 
Pl· + P·I - Pn - PI·P·I 

and he lists a number of formal properties that this index has. For example, 
it is ~ 1 ; it is zero when Pn = PloP.I; it has desirable monotonicities; etc. Finally 
Gilbert mentions the difficulties of extending his index to prediction problems 
with more than two alternatives. H. A. Hazen [77] criticized Gilbert's paper, 
and suggested an alternative index of predictive success based upon a weighted 
scoring scheme that gave decreasing credit to occurring tornadoes as they fell 
further from the center of the predicted region. 

In the same year that Gilbert's paper appeared, C. S. Peirce [115] suggested 
a much less ad hoc index of prediction success. Peirce pointed out that one 
could think of the observed results as obtained by using an infallible predictor 
a proportion () of the time, and a completely ignorant predictor the remaining 
proportion I-() of the time. The infallible predictor predicts "Tornado" if and 
only if a tornado will occur. The ignorant predictor uses an extraneous chance 
device that precicts "Tornado" with frequency 1/; and "No Tornado" with fre­
quency l-1/;. Thus what we are asked to contemplate is a mixture of the two 
2X2 sets of probabilities 

P·I o 

o p., 

with weights () and I-() respectively. The meanings of the four cells in these 
tables are the same as in the preceding tables. 

The mixed table is, therefore, 

(Jp·I +(1-())p.II/; (1 -())p .,1/; 

(l-(J)p·I(l-l/;) ()p.,+(l-(J)p.,(l-I/;) 

and Peirce inquires what values of () and 1/; will reproduce the actually observed 
2X2 table. (Note that for any () and 1/; the column marginals of the mixed table 
are P.I and P.2.) 

For this approach to make sense, () and 1/; must be uniquely defined in terms 
of the actual Pab table. From the (1, 2) cell, we require 

(1 - ())1/; = Pld P·2, 

whence from the (1, 1) cell 

PllP22 - Pl2P21 Pu - PI·P·I 
() = = I 

P·lp·2 p·lp·2 

and 

PI2p·I 
1/;=----

PI2p·I + P21P·2 
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Substitution shows that these values form a unique solution. The only difficulty 
occurs when 6 is negative, for then it can scarcely be a probability. 6 itself is 
suggested as the measure of association in the sense of prediction success. 
Note that 

Pn PI2 
6 = ---, 

P·I P·2 

or the difference between the conditional column wise probabilities of a tornado 
prediction. 

If 6 = 1, prediction is considered as good as possible, since it is equivalent to 
infallible prediction. If 6=0, prediction is as poor as it can be without being 
perverse, since it is equivalent to randomized prediction using the row marginal 
frequencies of the table under investigation; that is, it corresponds to inde­
pendence. Further, the 6 that makes 6p.l+(1-6)p.llf equal to Pn has an opera­
tional interpretation in terms of a hypothetical, if perhaps far-fetched, model 
of activity. As 6 increases, prediction improves. 

This proposal by Peirce is of a kind that may be called latent structure 
measures. We discuss this kind of measure later on in Section 4.9. Peirce's 
measure, 6, was independently proposed and differently motivated by W. J. 
Youden in 1950 [66, p. 745, footnote]. 

Peirce mentions the extension of his approach to larger tables but gives no 
details. He concludes; by suggesting another index that takes into account the 
"profit, or saving, from predicting a tornado, and ... the loss from every un­
fulfilled prediction of a tornado (outlay in preparing for it, etc.) .... " Thus 
Peirce, writing in 1884, is the first person of whom we know to discuss the 
measure of association problem with the intent of giving operationally mean­
ingful measures. Of course, further study might bring earlier proposals to light. 

Very soon after Peirce's letter appeared, M. H. Doolittle [35] discussed the 
topic at the December 3, 1884, meeting of the Mathematical Section of the 
Philosophical Society of Washington. Doolittle argued for a symmetrized ver· 
sion of Peirce's index, suggesting on rather ad hoc grounds the product of the 
two possible asymmetrical Peirce quantities 

PllP22 - P12P21 PllP22 - P12P21 

P·lp·2 

This product is simply the mean square contingency, and may be the first 
occurrence of this chi-square-like index. Doolittle also alluded to the difficulty 
of extending such measures beyond the 2X2 case. 

At a subsequent meeting of the Mathematical SectIOn (February 16, 1887), 
Doolittle [36] continued his discussion in more general terms than those of 
measures of prediction success alone. His discussion is similar at points to that 
of Yule's 1900 paper [149] and he attempts to develop a rationale for the 
quantity we call the mean square contingency; Doolittle called it the discrim­
inate association ratio. At a third meeting (May 25, 1887), Doolittle [36] con­
cluded his discussion with a criticism of Gilbert's criticism of Finley. 

We cannot forbear presenting a quotation from Doolittle in which he strug­
gles to state verbally the general approach he favors. 
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"The general problem may be stated as follows: Having given the number of in­
stances respectively in which things are both thus and so, in which they are thus but 
not so, in which they are so but not thus, and in which they are neither thus nor so, 
it is required to eliminate the general quantitative relativity inhering in the mere 
thingness of the things, and to determine the special quantitative relativity subsiet­
ing between the thus ness and the soness of the things." [36, p. 85] 

What is a reasonable measure of prediction success for Finley's tables in 
terms of our A measures? In this case, Ab is zero, reflecting the fact that knowl­
edge of Finley's prediction would be no better than ignorance of it in predict­
ing a tornado. If, however, we adjust Finley's table so that the column mar­
ginals are e,qual, while conditional column frequencies remain unchanged, we 
obtain Ab * = .67. This means that if Finely's prediction method were used in a 
world in which tornadoes occur half the time, we could reduce the error of 
prediction 67% by knowing Finley's prediction as against not knowing it. 
We might go further and make both column and row marginals equal, obtain­
ing Ab * = .88. The interpretation of this is the same as before except that now 
Finley is allowed to use the knowledge that tornadoes occur half the time, so 
that he will predict a tornado half the time. 

It may, of course, be cogently argued that in situations such as Finley's it 
is misleading to search for a single numerical measure of predictive success; 
and that rather the whole 2X2 table should be considered, or at least two num­
bers from it, the proportions of false positives and false negatives. 

We conclude this section by mentioning briefly some suggestions made by 
German meteorologists at about the same time. As early as 1870, W. Koppen 
had considered association measures in connection with his study of the tend­
ency of meteorological phenomena to stay fixed over time. This is related to 
the problem of measuring prediction, although it is not quite the same. Kop­
pen's basic article on the topic appears to be [91]; an exposition is given by 
H. Meyer [108, Chapters 11 and 13] together with further references. Koppen 
and Meyer discuss the question of measuring constancy in various contexts; 
one relates to a 2X2 table with both classifications the same but referring to 
different times, and with the two marginal pairs of frequencies the same. For 
example, the table might be of the following form: 

Wind at preceding 8 A.M. at 
the observation station 

North 

Not North 

Wind at 2 P.M. at an 
observation station 

North Not North 

PNN PNN 

PNN=PNN 
-PNN 

PN I-PN 

PN 

I-PN 

1 

In this case Koppen (as we interpret his discussion) suggests measuring con­
stancy of wind direction between 8 A.M. and 2 P.M., with respect to the di­
chotomy North vs. Not North, by 
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PN(1 - PN) - PNN 

PN(1 - PN) 

or the difference between the probability of a change from North under inde­
pendence and the same actual probability, this difference taken relative to the 
probability under independence. 

In 1884, an article either by Koppen or someone probably influenced by him 
[92] suggested a measure of reliability between meteorological prediction and 
later occurrence in the 3X3 ordered case. The measure was 

1 
:E Paa + - :E :E Pab, 

2 Ja-bJ=l 

as in Section 8.3 of [66]. The next year, H. J. Klein [89] discussed the simpler 
measure :EPaa in the general aXa reliability case. 

Bleeker [10] presents an analytical survey of the above early American and 
German suggestions in the field of meteorological prediction, together with a 
discussion of many other papers. In Section 4.10 of this paper we survey more 
recent uses of association measures in meteorology. 

3.2. Korosy, Jordan, and Quetelet. In [85], Charles Jordan discusses meas­
ures of association introduced by J6zsef Korosy in the late nineteenth century. 
Korosy wrote extensively on the effectiveness of smallpox vaccination, and he 
was led to introduce various measures of association for 2 X 2 tables in order to 
summarize and interpret his la.rge quantities of data. Among the several meas­
ures discussed by Korosy for 2X2 tables, at least one is equivalent to Yule's 
Q and hence to our 'Y (see [66].) 

Jordan [85] extends one of Korosy's measures to aX{3 tables. In our nota­
tion, the extended measure is found as follows. For a 2X2 table, Korosy had 
proposed (PllP22)/(P12P21) as a natural measure of association. Jordan suggests 
forming all possible a{3 pooled 2X2 tables out of an aX{3 table, each of form 

Pcb 

and averaging the corresponding 2X2 measures to obtain an over-all measure. 
Jordan states in [85] the maximum value for the mean square contingency 

coefficient, cf>2. (Jordan also gives this maximum value in another related paper, 
[86]. The same maximum value has also been given by Cramer [66, p. 740].) 
Jordan further discusses Korosy's proof and use of the fact that, if in a 2X2 
table we observe only a proportion of individuals in a column (i.e., if there is a 
probability of selection), then, providing the selection probabilities in the two 
cells of the column are equal, Yule's Q and Korosy's equivalent measure are 
unaffected. This property of Q is emphasized by Yule in [149] and [150]. 
Finally, .Jordan asserts priority for Korosy's work in the following terms: "Le 
merite de Korosy consiste a avoir introduit et utilise on 1887, c.-a-d. avant 
l'avenement de la Statistique Mathematique, des grandeurs, mesurant l'asso-
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ciation, en bon accord avec les coefficients 5 et Q de Yule et cf>2 de Pearson utilises 
aujourd'hui." 

K6r6sy's writings are not readily available, and we have consulted only one 
of them [93]. This is a very interesting and sophisticated discussion of statisti­
cal material on the efficacy of smallpox vaccination, in which K6r6sy uses ex­
tensively 2 X2 table coefficients of association. Emphasis is on the interpreta­
tion of such material and on the many ways in which vaccination and smallpox 
statistics might be consciously or unconsciously distorted, falsified, and biased. 
(On page 221 of the same volume in which [93] appears, there begins a fascin­
ating discussion of a case of falsification of smallpox-vaccination data. The cul­
prit was an anti-vaccinationist, and the detective work was done by K6r6sy.) 

The question of priority in the use of simple measures of association for 2 X 2 
tables scarcely seems very important. However, it may be of historical interest 
to note that Yule, in his first (1900) paper on the subject [149] speaks of 
Quetelet's use of a measure of association in 2X2 tables: (pn-Pl.p.l)/(Pl.p.l), 
in our notation. l In fact, Yule named his coefficient "Q" after Quetelet [150, 
p. 586]. The work by Quetelet of which Yule writes is not accessible to us, but 
in another place [119] Quetelet uses another very natural measure for compar­
ing (say) the two rows of a 2X2 table in a case wherein they correspond to two 
binomial populations. He simply takes the ratio of the two binomial p's: 
(pn/pd/(p2I/P2')' This ratio probably has been used since nearly the beginning 
of arithmetic. Of course, neither of the two measures last mentioned have the 
symmetry of chi-square or of Yule's Q, so that perhaps Jordan would say that 
they are not "en bon accord" with the measures of Yule and Pearson. 

Biographical, bibliographical, and appreciative material on K6r6sy may be 
found in a book by Saile [121] and in an obituary by Thirring [134]. A more 
recent paper by Jordan on the general question of association measures is [87]. 

3.3. Benini. In 1901, the Italian demographer and statistician, R. Benini 
[4, pp. 129 ff.] suggested measures of attraction and repulsion for 2X2 tables 
in which the categories of the two dichotomies were the same, or closely related. 
Benini was mainly concerned at this time with the association between di­
chotomous characteristics of husband and wife among married couples, for exam­
ple the association between categories of civil status. Among marriages in Italy 
during 1898, Benini gives the following 2 X2 breakdown of premarital civil 
status (in relative frequencies): 

Wife 

Unmarried Widow Totals 

- -
Unmarried .8668 .0275 .8943 

Husband - -
Widower .0742 .0315 .1057 

- -

Totals .9410 .0590 1 

1 Note that this is the same as the suggestion by Koppen mentioned in Section 3.1. 
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Comparing this with the corresponding "chance" table obtained by multiplying 
marginal frequencies, Benini observed that there clearly was association be­
tween the premarital civil statuses of husband and wife. To measure the attrac­
tion between similar premarital civil statuses, he suggested the following meas­
ure (our notation): 

Pn - Pl·P·l P22 - P2·P·2 

Min (Pl., p.l) - PI·P·1 Min (P2., p.2) - P2·P·2 

on the grounds that, when the numerator is nonnegative, the denominator 
gives the maximum possible value of the numerator for fixed marginals. The 
numerator is the usual quantity on which 2X2 measures of association are 
based. When the numerator is negative, a slight revision of the formula pro­
vides Benini's measure of repulsion. In the above example Bellini's measure of 
attraction has the value 

.8668 - .8415 253 
---- = - = .479 . 
. 8943 - .8415 528 

In 1928, Benini [5] extended his method of analysis by suggesting a separa­
tion of the 2X2 population into two 2X2 subpopulations, one with two cells 
empty, and the other with all marginal frequencies equal to 1/2. Then his 
measure of attraction (or repulsion) would be computed only for the second 
sub-population. This represents one way of eliminating the effect of unequal 
marginals in comparing several 2X2 populations. (In Section 5.4 of [66] an­
other way of attaining this goal was briefly discussed.) A variation of this point 
of view, much akin to latent structure analysis (see Section 4.9), was applied by 
Benini to sex-ratios in twins in order to estimate the fractions of fraternal and 
identical twins in the population. 

Benini's work has been discussed by a number of Italian statisticians. An 
early discussion was by Bresciani in 1909 [15]. A. Niceforo [110, pp. 383-91] 
and [111, pp. 462-8] also considers Benini's suggestions, and provides an enter­
taining discussion, with many examples, of several aspects of cross classifica­
tions. We refer in particular to Chapter 16 of [111]. A lengthy critical analysis 
of Benini's suggestions, as applied to matrimonial association, was given by 
R. Bachi [3]. Some further articles dealing with Benini's work are those of G. 
de Meo [31], F. Savorgnan [126], G. Andreoli [2], and C. E. Bonferroni [13]. 
Benini's first measure of attraction was independently suggested by Jordan 
[87] in 1941, by H. M. Johnson [84a] in 1945, and by L. C. Cole [28] in 1949. 
No doubt there have been many other independent suggestions of this meas­
ure. It has been frequently used by psychologists and sociologists in recent 
years and called, descriptively enough, t/>/ cf>max. 

Benini's first measure has recently been critically reviewed by D. V. Glass, 
J. R. Hall, and R. Mukherjee [63a, pp. 195-96,248-59] in a book by these 
writers and others on social mobility in Britain. Glass et al. deal mostly with 
aXa cross classifications of father vs. son occupational status; their general 
approach is to construct a number of 2X2 condensed cross classifications from 
a larger aXa one, with the condensed dichotomies of form father (son) in 
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occupational status a vs. not in status a. Then the 2X2 condensations are 
examined by looking at three of the ratios Pab/(Pa.P.b). 

3.4. Lipps. In 1905, G. F. Lipps [100] discussed various ways of describing 
dependence in a two-way cross classification. For the 2X2 case, Lipps inde­
pendently proposed Yule's Q. For larger tables, Lipps points out that (a-I) 
. ({3-1) numbers are required to describe the dependence in full; he argues 
againt use of a single numerical measure of association in these words: 
"Es ist demzufolge nicht zulassig (ausser wenn r=s=2[a={3=2 in our nota­
tion]) einen einzigen Wert als schlechthin gilltiges Mass der Abhangigkeit 
aufzustellen" [100, p. 12]. However, he refers, in a footnote, to articles on 
correlation by Galton and K. Pearson in contradistinction. 

It is interesting to notice that, in the last section of his paper, Lipps proposed 
a quantity equivalent to Kendall's rank correlation coefficient, T. The quantity 
Lipps proposed is Kendall's P =n(n-l)(T+l)/4 where n is sample size. Lipps 
suggested testing for independence by this quantity, and to implement this 
he computed its mean and variance under the hypothesis of independence. A 
year later Lipps [101] discussed 2P - G) = mT. Material on Lipps' work, and 
on other early ranking methods, is presented by Wirth [147, particularly Chap­
ter 4, Section 28]. A discussion of the history of Kendall's T is given by Kruskal 
[96 ]. 

3.5. Tonnies. The German sociologist, F. Tonnies, suggested in 1909 [137] 
a measure of association for square cross classifications in which both polyt­
omies are ordered. A later paper is [138]. Tonnies presents his measure, which 
is related to the so-called Spearman foot-rule, in terms of continuous, rather 
than grouped, variates, but he immediately collects them into groups on the 
basis of their relative magnitudes. 

The measure, in our terminology, is found by first adding all Paa'S, i.e. all 
Pab'S in the main diagonal, and multiplying this sum by 2. To this is added the 
sum of all Pab'S in the two diagonals neighboring the main diagonal. Then an 
analogous weighted sum is computed for the counter-diagonal and its two 
neighbors, and this is subtracted from the first sum. In terms of a formula, 
Tonnies looks at 

[ 2 ~b~ Pab + E~~ pabJ - [ 2 E_EPab + aflEl pab]. 

He compares this quantity with 2- (2/a) , its maximum possible absolute value. 
Thus Tonnies' measure is of the kind discussed briefly by us in Section 8.3 of 
[66 ]. 

H. Striefler [130] provides an exposition of Tonnies' measure and suggests 
an extension. 

3.6. Deuchler. In 1914, the German educational psychologist, Gustav Deuch­
ler [32], continued the earlier work of Lipps (Section 3.4) on the quantity 
now called Kendall's T. Deuchler worked on the distribution of T, both under 
the null hypothesis of independence and under alternative hypotheses, on 
methods of computing T, and on modifications when ties are present.2 

• For further discussion of Deuehler's work on r itself we refer to [96]. For information about other aspects of 
Deuchler's work, and for remarks about an unpublished monograph by Deuchler, we refer to [95]. A microfilm of this 
unpublished manuscript is in our hands, and we will try to make it available on request. 
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A few years later, Deuchler [33] returned to the question of multiple ties in 
both coordinates, so that he was really concerned with cross classifications 
having meaningful order for both polytomies. For this situation Deuchler sug­
gested as a measure of association (in our notation) 

II,s - lIdS II, - lId 
~= =----

1 - II t (both) 1 - II t (both) 

Here II8S (IIdS ) is the probability that two randomly chosen individuals from 
the cross classified population will have their A and B categories similarly 
(dissimilarly) ordered, with a tie in one polytomy alone always counting as 
similarity (dissimilarity), but a tie in both categories-i.e. both individuals in 
the same cell-not counting in either case. II t (both\ is the probability that two 
randomly chosen individuals fall into the same cell, i.e. are tied in both poly­
tomies. Thus ~ is much like our 'Y [66, Sec. 6] except that Deuchler has II t (both) 

where we have lIt. 

Actually Deuchler's presentation is in terms of choosing two individuals at 
random without replacement from a finite cross classified population, whereas 
we in [66] give an interpretation in terms of random choice with replacement. 
For ~, one obtains the same value of the measure in either interpretation, while 
'Y changes slightly as one goes from the with-replacement to the without­
replacement interpretation. 

Deuchler develops his ~ by the same scoring scheme as that later used by 
Kendall. ~ does not have quite as direct an interpretation as 'Y, but it possesses 
one characteristic that 'Y does not have: ~ is 1 (its maximum value) if and only 
if at most one Pab in each row and column is positive and the positive Pab'S are 
all concordant. This last means that, denoting the positive Pab'S by Pa1bll 

Pa.J>u ••• , with al <a2< ... , then b1 <b2< .... The examples on p. 750 of 
[66] show that this property is not true for 'Y. Note that I ~ I ::; \ 'Y \. 

Deuchler observes that ~ varies as contiguous categories are pooled and he 
discusses the magnitude of this effect at length. He also compares his ~ with 
Spearman's rank correlation coefficient, and with the mean square contingency 
coefficient in the 2X2 case. The applications that Deuchler has in mind, and for 
which he uses his measure, are to the association between the grades of school 
children in two subjects or traits. He discusses briefly the situation in which 
one wishes to analyze such joint gradings on more than two such character­
istics. In [34], Deuchler discusses in more detail the 2X2 case. 

3.7. Gini. In 1914-1916, Corrado Gini [56,57,58,59,60] examined in de­
tail many distinctions between relationships within a bivariate distribution, 
and proposed a great variety of measures of association and disassociation.3 

Examples were given to indicate the circumstances under which the various 
proposed measures might be appropriate. 

Many of Gini's measures of association relate to cases in which the bivariate 
distribution is quantitative or can easily be made so by the use of relevant 
ordinal scores. For the qualitative case without ordering among the categories 

• We wish to thank Sebasti .. n C ...... rino. Dep .. rtment of ItaJian. University of California. Berkeley. for his 
assistance in examining Gini's papers. 
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(sconesse categories), and where both polytomies are the same (Aa =Ba), Gini 
[57] proposed as a measure of association the quantity (in our notation) 

This is based on a sort of indirect scoring scheme, suggested by divergences of 
cell frequencies from the corresponding marginal products. In the 2X2 case, 
the above quantity is the appropriately signed square root of the mean square 
contingency. 

In [58], Gini proposed the following variant of the above measure: 

LPaa - LPa.P.a 

1 - t L I Pa· - P·a I - LPa.P.a' 

and a number of other variations were discussed systematically in [58] and 
[60]. 

We have not found in Gini's papers operational interpretations of his pro­
posed measures. They all seem to be of a formal nature in which consideration 
of absolute or quadratic differences, followed by averaging, is taken as reason­
able without argument. Special attention is paid to denominators so as to 
make the indices range between 0 and 1 (or -1 and 1) within appropriate 
limitations for variation in the joint distribution. 

In [57, p. 598], Gini briefly discussed polytomies in which the categories are 
cyclically ordered, as for example the months of the year. This type of polytomy 
was not discussed by us in [66]. Gini suggested the possibility of a measure of 
association in this case, but he gave little detail. Ten years later Pietra [116] 
considered the cyclical case in great detail, and since then other Italian authors 
have written on this topic. 

The measures proposed by Gini have formed the basis of a large literature, 
mostly in Italian. We now cite several publications outlining and discussing 
Gini's work in this area. First, Gini himself [60, pp. 1458 ff.] gave a systematic 
outline of his measures. An exposition in English of some of the Gini material 
was given by Weida [144], and a more detailed exposition by Pietra in the 
introduction of [116]. A general article on the work of the Italian school is 
that of Gini [61]; another, of a critical nature, is by Thionet [132]. (The 
reader of this last article should also refer to subsequent correspondence by 
Galvani [54] and Thionet [133].) Two recent expositions by Gini are [62] and 
[63, Chap. 9]. 

Some further references to the recent Italian literature appear in Section 4.7. 
In Section 4.4 a measure proposed by Gini in the aX2 case is discussed in de­
tail. 

4. MORE RECENT PUBLICATIONS 

4.1. Textbook discussions. Guilford, Dornbusch and Schmid, Wallis and 
Roberts. In [73], J. P. Guilford discusses association in an aX(3 table from the 
viewpoint of optimal prediction in a manner essentially equivalent to that of 
Guttman (see comment and reference in [66, p. 742]), and to that in which we 
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introduced All and Ab in [66]. This discussion appears in Chapter 10 of the 1942 
edition and is amplified in Chapter 14 of the 1950 edition. 

In a recent textbook [37, p. 215], S. M. Dornbusch and C. F. Schmid dis­
cuss a "coefficient of relative predictability" for aX2 tables, their O. It is equal 
to All for aX2 tables. 

W. A. Wallis and H. V. Roberts present the A measures and 'Y in their book 
[142, Chap. 9]. Their notation corresponds to ours as follows: 

Wallis-Roberts ge" g"e g h S D T 
------

Goodman-Kruskal 
nl nl nl 

Ab ).,. A 'Y "2 II. -II" -II, 
2 2 

and their discussion is in terms of sample frequencies. 
4.2. Reliability mea8ure8. We describe now some papers on measures of 

association in the reliability context, that is when both polytomies of a cross 
classification are the same and refer to two methods of assignment. Other papers 
that deal with reliability measures will be discussed elsewhere, particularly in 
Sections 4.9 through 4.12, under other classifications. 

Wood. In 1928, K. D. Wood [148] suggested several variations of the kind 
of measure of association described in Section 8.3 of [66] where reliability for 
ordered polytomies was discussed. Wood's suggestions related to a 4 X 4 table 
with PII' =p.r.=.25 for all a and bj they were 

:E PIJIJ, :E:E Pllb, :E PIIII - :E :E PtAb, and L :E PGb - :E :E Par.. 
1 a-l> 1 :$1 tJ-t/).4 111-1>1:;;1 111-1>1 ~2 

Actually, Wood's discussion is in terms of sample analogs, and it is wholly 
motivated by the desire to find sample functions that approximate well to the 
sample correlation coefficient. To investigate this he divides a sample into 16 
parts via its marginal quartiles, computes the above measures, and compares 
them with the sample correlation coefficient. 

Reuning. H. Reuning [120] has recently suggested a new measure of re­
liability in the case of ordered polytomies. Reuning compares the actual PGb 

table with the table that would result if (a) there were independence between 
rows and columns, and (b) the marginal distributions were rectangular-he 
calls this the case of pure chance j its meaning is that each Pllb = 1 I a 2• Further, 
in order to use the natural ordering, Reuning suggests pooling all cells such that 
! a-b! =constant. There are a cells such that! a-b! =0, 2(a-l) cells such 
that! a-b! =1, 2(a-2) cells such that! a-b! =2, ... , and 2 cells such that 
! a-b! =a-l, the maximum difference. Thus Reuning is led to compare 

:E PIJIJ with a(l/a2) = l/a 

:E Par. with 2(a - 1)/a2 

:E Par. with 2(a - 2)/a2 
la-l>l-2 

Pler + P.l with 21 at 
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In order to obtain a measure of reliability, Reuning in effect considers the fol­
lowing x2-like quantity 

[ 
No. of summands in L:]2 

~ la-bl-k 
a-I L.t Pab - 2 L: __ I_a-b __ I=_k _______________ a __ ~~------

r-O No. of summands in L: 
la-bl-io 

Reuning also considers l;Paa, a measure mentioned in [66]. 
The above presentation differs slightly from that given by Reuning, first, 

because he works with sample instead of population quantities, and, second, 
because he emphasizes testing rather than estimation. If we regard the popula­
tion characteristic in the above display as a general measure of reliability (and 
it is not wholly clear from Reuning's paper whether he so regards it) some 
problems of interpretation arise, stemming from the comparison with the "pure 
chance" cross classification. For one thing, if l;Paa = 1, so that reliability in the 
ordinary sense is perfect, Relining's measure takes the value a-I, which is by 
no means its maximum possible value. On the other hand, if PIa+Pal=l, so 
that reliability in the ordinary sense is about as poor as can be, Reuning's 
measure takes the value (a2 -2)j2, which is actually greater than its value 
for l;p ... =1 (unless a=2, when the two values are equal). 

The "pure chance" or uniform table as a basis of comparison had been put 
forward by Andreoli [1] in 1934. H. F. Smith [126a] uses the same device of 
pooling along diagonals as does Reuning, but in the context of a comparative 
test of two square cross classifications. 

Cartwright. D. S. Cartwright, for the case of unordered polytOInies, has re­
cently [19] suggested a measure of interreliability when there are two or more 
classifications, each with the same polytomy. He thinks of the common poly­
tomy as possible judgments about members of the population on the part of 
J judges, so that 

is that fraction of the population allocated by judge 1 to class aI, by judge 2 to 
class~, etc., where ai= 1,2, ... ,a. His measure of reliability, in our notation, 
may be written as 

2 ----- L: L: L: P .. ·ai .. •a .... , 
J(J - 1) i ">i ai=a" 

or the probability that two different randomly chosen judges out of the J 
judges will allocate a random member of the population to the same class. 
For J = 2, this becomes just l;Paa. 

Cartwright's presentation of his measure differs superficially from the above. 
He also considers distribution theory for the sample analogue of the above 
measure under special restrictive conditions. 

4.3. Meaaurea that are zero if and only if there is independence. The traditional 
xl-like measures of association, unlike the). and 'Y measures discussed by us in 
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[66], have the property that they take a particular value, zero, if and only if 
there is independence in the cross classification, i.e., Pab=Pa.p.b. This property 
has seemed important to a number of workers, and they have proposed meas­
ures of association with the property but different from the traditional meas­
ures. In some cases, other formal properties have also been emphasized. We 
now discuss several such proposals that do not fit more naturally into other 
sections of this survey. 

So far as we know, none of the measures discussed here have operational 
interpretations of the kind we have argued for in [66], and indeed this is not 
surprising. For a measure with an operational interpretation measures, so to 
speak, one aspect or dimension of association. Hence, if a given cross classifica­
tion exhibits no association along this aspect or dimension one would expect 
a zero value for the measure, even if there is association in other senses. That 
is why we are not troubled by the fact that the>. and 'Y measures can be zero 
even though there is dependence. Note that if there is independence the>. and 'Y 
measures are zero. This is to be expected, since independence should correspond 
to lack of association in any sense. 

Cramer. In 1924, H. Cramer [29] suggested for an aX{3 table the measure 

min E E (Pab - UaVb) 2 
a b 

where the minimum is computed over all numbers Ul, ••• , Ua ; Vl, ••• , vfJ. 
This quantity is zero if and only if there is independence, and is always ::; .25. 
It suffers from having no definite value in the case of complete dependence. 

Cramer says [29, p. 226] that" ... there is no absolutely general measure 
of the degree of dependence. Every attempt to measure a conception like this 
by a single number must necessarily contain a certain amount of arbitrariness 
and suffer from certain inconveniences.» 

Steffensen. In 1933, J. F. Steffensen [127] proposed the following measure 
of association for cross classifications: 

2 _ ~ ~ (Pab - Pa·P·b)2 
1/1 - L..J L..J Pab ---------

a b Pa· (1 - Pa·)P·b(l - p.b) 

in our notation. (See Lorey [105] for a discussion.) Apparently Steffensen's 
motivation was to avoid certain formal inadequacies of previously suggested 
measures. For example, Steffensen points out that his 1/12 attains its upper limit 
of 1 if and only if the two classifications are functionally related, i.e. if and 
only if exactly one Pab in each row and in each column is positive. Steffensen 
gives no operational interpretation for 1/12• Note that 1/12 is an average of all 
2X2 mean square contingencies formed from each of the afJ cells of the cross­
classification and its complement; in this it resembles the measure proposed by 
Jordan [85] that we discussed in Section 3.2. 

The next year, Steffensen [128] returned to 1/12 in greater detail. (In [127] 
the measure had appeared only in a nonnumbered page of errata, as a better 
version of a similar measure, given in the article proper, that Steffensen later 
decided was unsatisfactory.) Then Steffensen suggested a variant, 
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2 :E :E (Pab - Pa·P·b) 
w = ------------------------------

:E :E (Pab - Pa·P·b) + 1 - :E :E Pab2 

where :E:E means summation over thol'\e cells for which Pab> pa.p.b. He showed 
that w, along with 1/;2, (1) lies between 0 and 1, (2) is 0 if and only if independ­
ence obtains, and (3) is 1 if and only if exactly one Pab in each row and column 
is positive. Finally, an extension to the case of continuous bivariate distribu­
tions was suggested. 

Immediately following [128] an editorial [114] (presumably by Karl Pear­
son) criticized Steffensen's suggestions with arguments based on the assump­
tion of an underlying continuous distribution. First, the editorial said that the 
continuous analogue of 1/;2 would be identically zero because of the presence of 
squared differentials. Then it argued that a measure of association for cross 
classifications should not be able to attain the value unity, because, while 
complete dependence might exist between the two polytomies, it could well be 
the case that a finer cross classification would show that within the original 
cells complete association did not exist. These arguments were used to contrast 
Steffensen's suggestions with the coefficient of mean square contingency, to 
the latter's favor. The editorial concluded with a numerical comparison of 1/;2 
and the coefficient of mean square contingency for a number of artificial cross 
classifications, and it stated that 1/;2 tends to be too low, with values crowded 
in the interval [0, .25], even for quite sizable intuitive association. 

In 1941, Steffensen [129] returned to his discussion of w. He presented a 
natural generalization to the density function case and showed that the three 
properties mentioned above still essentially held. A lengthy discussion of the 
generalized w in the bivariate normal case was given, and the paper concluded 
with a rebuttal to the arguments of [114]. 

This discussion reinforces our beliefs that it is essential to give operational 
interpretations of measures of association and that the mere fact that a meas­
ure can range from 0 to 1 (say) is of little or no use in understanding it. 

Pollaczek-Geiringer. In 1932 and 1933, Hilda Pollaczek-Geiringer [117,118]' 
motivated by considerations similar to those adduced by Steffensen, suggested 
a measure of association for any bivariate distribution, continuous or discrete. 
The measure may also be applied, as Pollaczek-Geiringer suggested, to a cross­
classification in which both polytomies are ordered. In our notation, the sug­
gested measure for this case is 

:E :E (AabDab - BabCab) 
a b 

:E :E (AabDab + BabCab) , 
a b 

where 

Aab = L L Pa'b' Bab = L L Pa'b' 
a';sa b';sb a'>a b';Sb 

Cab = L :E Pa'b' Dab = L :E Pa'b' 
a'Sa b'>b a'>a b'>b 
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Pollaczek-Geiringer gives no operational interpretation. Her measure has a 
certain similarity to our 'Y [66, Section 6] especially if it is modified by replace­
ment of the summations with weighted sums, having Pab'S as weights. 

Hoffding. In 1941 and 1942, W. Hoffding (now Hoeffding) presented two 
very interesting papers bearing on measures of association for cross classifica­
tions. Hoffding's first paper on cross classifications [79] was based on a prior 
paper of his [78] that had dealt solely with the bivariate density function case. 
In [78], it was urged that measures of association should be invariant under 
transformations, monotone in the same direction, of the associated random 
variables. Several measures having this invariance were presented and their 
properties discussed. The cross classifications of [79] were considered as arising 
from underlying density function distributions by rounding. Hence their cumu­
lative distribution functions are only known at points of a rectangular lattice, 
and their density functions are only known via averages over cells. In order to 
apply the suggestions of [78], Hoffding replaced a cross classification by a 
density function distribution with constant density within each cell, propor­
tional to its Pab. (This might appear to make matters depend on metrics for the 
two classifications, but any such dependence is a notational artifact, disappear­
ing later because of invariance.) Then Hoffding applied to this "step-function" 
density the measures of [78]. The first was the correlation coefficient between 
the probability integral transforms of the marginal random variables (this is 
the so-called grade correlation, or population analogue of Spearman's rank cor­
relation coefficient). Hoffding obtained 

P = 3 L L pab[2( L pa',) + Pa· - 1J[2( L P.b') + P·b - 1J. a b a'<a b'<b 
A slight modification gave him the more satisfactory 

p* = p/V(1 - LPa. 3)(1 - LP.b3). 

Hoffding then discussed the extrema that p and p* can reach, and their values 
for 2X2 tables. In the 2X2 case, p*2 is just the mean square contingency. 

Hoffding then pointed out that his p* is the same as Student's modification 
of Spearman's rank correlation coefficient [131], provided that appropriate 
notational translations are made. The article continued with a discussion of 
mean square contingency and related coefficients, including one that is a func­
tion of the quantities 

( L L pa'b') - ( L pa'.) ( L P.b'), 
a':s;a b':s;b a'sa b':s;b 

thus giving a measure of departure from independence as defined in terms of 
cumulative distributions. 

In the later portion of [80], Hoffding returned to these questions. He distin­
guished between those cases in which a continuous distribution is considered as 
underlying the discrete distribution of interest, and those cases in which the 
discrete distribution itself is of primary interest. For this second situation he 
suggested a measure of association by analogy with one for density-function 
distributions suggested earlier in the article. It. is simply 
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! ~ ~ I pab - Pa·P·b I· 

A modification was then put forward, namely, division by 1-~ ~Pab2, where 

~2: means summation over those (a, b) such that Pab>Pa.P.b. The result is 
simply related to Steffensen's w. 

Eyraud. H. Eyraud [43] suggested for the 2X2 table the measure of associa­
tion (Pll-Pl.p.l)/(Pl.p.lP2,p.2). He discussed its extreme values, its interpreta­
tion, and, briefly, its extension to aX(3 tables. In addition he considered the 
2X2X2 case. 

Frechet, Feran. M. Frechet has discussed measures of association in a series 
of articles (e.g. [50] and [51]) that deal mostly with cases in which a meaning­
ful metric exists for both polytomies. In some more recent articles, [52] and 
[53], he has studied the extent to which knowledge of the marginals restricts 
the probabilities of a cross classification. Frechet's work discusses the extent 
to which measures of association satisfy a set of formal criteria such as those 
mentioned earlier in this section. 

In two recent publications, [45] and [46], R. Feron has discussed measures 
of association, again with emphasis on the case when metrics are present, but 
with some consideration of the purely qualitative case. Several of the measures 
described in this section are discussed by Feron. 

4.4. Measures of dissimilarity, especially in the a X 2 case. In considering an 
aX2 cross classification, it is natural to approach the question of association 
by asking about the degree of dissimilarity between the two conditional multi­
nomial populations in the two columns, when compared row by row. This 
approach has often been taken in the social sciences when columns refer to a 
dichotomy of interest (Negro-White, Male-Female, etc.) and rows correspond 
to places, times, or the like. It is, of course, equivalent to speak of a 2X(3 cross 
classification by simply interchanging rows and columns. 

Gini, Florence, Hoover, Duncan and Duncan, Bogue. A measure of dissimilar­
ity in the aX2 case that has been proposed a number of times, often in variant 
forms, is the following: 

or half the sum of absolute differences between corresponding conditional 
probabilities in the first and second columns. The use of D appears to have 
been first suggested by C. Gini (see [56], [57], [61a)); some more recent 
publications about this measure are by P. S. Florence [48], E. M. Hoover [82] 
and [83], O. D. Duncan and B. Duncan [42], and D. J. Bogue [12]. 

Since the summation in D, if the absolute value signs were omitted, would 
be 1-1 =0, we see that 

~+ {pal _ pa2} + ~_ {Pal _ pa2} = 0 
a P·l P·2 a P·l P·2 

where 2:a + indicates summation over nonnegative values of the summand, 
and 1:a- indicates summation over negative values of the summand. Thus 
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D = L:+ {pal _ paz} = _ L:- {pal _ pa2} , 
a P·l p·Z a P·l p·Z 

and we see that D is the difference between the proportion of the population 
in column 1 appearing in rows for which PadP.l>PadP.2 and the proportion of 
the column 2 population appearing in these rows. A similar verbal statement, 
with the difference taken in the opposite sense, for rows with Pad P·l < Pa2/ P ,2, 
corresponds to the second equality of the above display. 

Now suppose we think of redistributing the (conditional) column 1 popula­
tion among its cells so that it becomes equal to the (conditional) column 2 
population. This means moving probability mass from the column 1 cells with 
Pad P·l > Pa2/ P·2 to those with the opposite inequality holding, and clearly the 
minimum proportion of the column 1 population that we must shift to achieve 
this goal is D. A similar interpretation may be given in terms of redistributing 
the column 2 population so that it becomes (conditionally) equal to the column 
1 population. After such a redistribution, the two cells in each row would have 
equal conditional probabilities, each conditional on its fixed column marginals. 
Also, the proportion of the population in a given row that is in column 1 will 
be the same for each row. Thus D has a useful operational interpretation for 
some purposes; for example see [42]. 

The construction of D suggests an ordering of the rows that may be of sub­
stantive interest in some contexts. Rearrange the rows so that the row with 
maximum (Pad P'l) - (Pad p.2) becomes the first row, the row with next largest 
(Pad P'l) - (Pad p.2) becomes the second row, and so on. If there are a. rows with 
PadP.l'?:.PadP.2, D may then be expressed as 

f {pal _ paz} _ _ t {pal _ pa2} 
a=! P·l P·2 a=a.+l P·l P·2 

in terms of the reordered cross classification. 
Some other easily obtained expressions for Dare 

D = t I Pal - pa·11 [2p.2] = t I pa2 - pa·11 [2p·d 
a=l P·l a=l P·2 

a 2 I P b II = E E P~b - pa. [4(1 - p.b)] 

a 2 

= L: L: I Pab - Pa·p·b 1/ [4P'lP.2]. 
a=l b=l 

The first three of these describe D in terms of absolute differences of form 
(Pab/ P .b) - Pa" while the last describes D in terms of the most conventional 
measure of deviations from cell independence, pab- Pa.P.b. This last expression 
for D resembles the traditional x2 kind of measure, but differs from such meas­
ures in that the absolute differences are used rather than the squared differ­
ences, and the weightings of the terms are different. 

Still another mode of description for D may be given in terms of absolute 
differences between the column conditional probabilities, Pab/ Pa" and the col­
umn marginals, P.b. It is easily checked that 
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a I Pal I D = L: - - P·I Pa./[2P'IP.2J 
a=l pa· 

a I pa2 I = L: - - P·2 Pa./ [2p.IP.2] 
a=l Pa· 

EEl ;:~ - p·b I Pa./[4P'IP.2]. 

The traditional x2-like measures may, of course, also be expressed in analo­
gous equivalent ways in the special case of two columns. For example, q,2 = x2/1l 
may be expressed as 

± t (Pab - Pa.P-b)2/pa .P-b = L: L:(pab - pa.)2p .b/ PS . 
a=l b=l p·b 

± (pal _ pa2) 2 P.IP·2 

a=l P·I P·2 Pa. 

L: L: - - P·b f'a./ P-b ( pab )2 

Pa· 

L: - - P·I Pa'/P·IP·2 
a (pal )2 

a=l pa· 

1 1.f.. palPa2 
= ---L.J--' 

P·IP·2 a=l Pa· 

The possibilities of expressing a measure in terms of the deviation of Pab from 
Pa.P.b, in terms of the deviation of Pal/P'l from Pa2/P.2, or in terms of the devia­
tion of Pab/ Pa. from P-b, etc., may give added insight into the nature of the 
measure by suggesting interpretations and approaches to it from different 
directions. On the other hand, the same possibility of variant expression may 
cause confusion in communication and may mislead authors to think that sym­
bolically different expressions correspond to different measures, when in fact 
the measures are the same. Duncan and Duncan [42] and J. Williams [145] 
discuss a number of articles where this difficulty seems to exist. The last form 
given above for q,2 has been discussed by E. Katz and P. Lazarsfeld [87a, 
p.373]. 

Measures of association for the aX(3 case may be based on the idea of dis­
similarity between two columns by averaging in some way the (3«(3-1)/2 pos­
sible values of an aX2 measure of dissimilarity obtained from pairs of columns 
in the larger cross classification. Alternatively, one might average the (3 values 
of an aX2 measure obtained by comparing each column of the aX(3 table with 
the column of row marginals, Pa .• This approach has been used by Gini and 
by Frechet, in references cited earlier. 

Boas. In 1922, Franz Boas [11, pp. 432-4] sU5gested a measure of dissimilar­
ity between one specific column of a cross classification and the column of 
row marginals, that is between one multinomial population and the (weighted) 
average of a group of multinomial populations to which the one in question 
belongs. Boas's suggestion, in our notation, seems to be the following: 
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Suppose that an individual is chosen at random from the bth column of a 
cross classified population in accordance with the conditional distribution for 
that column. That is, the individual falls in the (a, b) cell with probability 
p,."lp.b. Now suppose that we are told the row in which he falls but not told 
that he came from the bth column. If we guess his column, based on knowledge 
of his row, in a random manner reproducing the population (as discussed in 
Section 9 of [66]), we shall guess column b with conditional probability p,.,,1 Po., 
where a is the row in which he has fallen. Thus the probability of correctly 
guessing the cell in which the individual falls, when (i) he is in fact drawn from 
the bth column, and (li) we guess his column, knowing only his row, in a 
random manner reproducing the population, is 

That is, as we undertand it, Boas's measure of dissimilarity between column b 
and the column of row marginals. 

Boas also considers the possibility of changing the table so that it has equal 
column margina1s (see Section 5.4 of [66]). 

Long and Loevinger. In working with psychological tests made up of yes-no 
questions, one may wish to consider association between a particular question 
and the whole test. This situation may be viewed in the framework of an aX2 
table in which the columns refer to the two possible responses and the rows 
make up an ordered classification based on the whole test. The p,.,,'s are the 
proportions of individuals in the population falling into one of the whole-test 
score classes and responding to the individual question in one of the two pos­
sible ways. For this special psychometric situation, measures of association 
have been proposed and discussed by Long [105] and by Loevinger [102, 
Chap. 5] and [103]. 

4.5. Mea8ure8 ba8ed on Lorenz or c08t-utility curve8. For the aX2 cross clas­
sification, where the a rows have a meaningful order (determined from the 
cross classification itself, as discussed in Section 4.4, or determined from ex­
ternal considerations) the following approach has been suggested. Consider 
the partial sums 

.. Pil 
X .. = L: - and 

i=l P·l 

Y ~ P'2 
a = £..J -, 

i=l P·2 

and consider the points (X .. , Y .. ) for a=l, ... , a in the unit square. The 
underlying thought is that these are points on a smooth curve expressing a 
functional relationship between X and Y, but that we only know this curve at 
the a points (X .. , Y .. ). If there is independence in the cross classification, then 
Y"=X,, for each a; i.e., the points (X .. , Y .. ) lie on the straight line segment going 
diagonally from (0, 0) to (1, 1). But if there is association, the general shape 
of the underlying curve suggested by the (X,., Y,,),s, and its "distance" from 
the diagonal line, will describe it. Several measures of association, based on this 
idea, have been suggested in the literature (see, e.g., [42], [65], [6], [41]), 
but we shall not discuss them here. In some cases, a structural assumption or 
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smoothing procedure (e.g., the use of straight line segments) is used to obtain 
a curve from the a points. 

4.6. Measures based on Shannon-Wiener information. McGill, Holloway, 
Woodbury, Wahl, Linfoot, Halphen. Some time ago it was suggested to us by 
J. W. Tukey that measures of association based on the Shannon-Wiener in­
formation function might be useful. Since we were unable to satisfy ourselves 
that such measures would have reasonable interpretations for many contexts 
in which cross classifications appear, we did not discuss the possibility in [66]. 
We wish, however, to mention here a few papers in which the information con­
cept is used as the basis of measures of association, although we continue to 
reserve our opinions about the utility of these proposals outside the area of 
communication theory. 

Perhaps the first such paper is by W. J. McGill [107]. Soon after it, the 
approach was suggested in a meteorological setting by J. L. Holloway, Jr. 
and M. A. Woodbury [81]. E. W. Wahl [141] summarizes some of the material 
of [81]. The measure has been used in meteorology, notably by 1. 1. Gringorten 
and his colleagues, [72] and [69]. Two quite recent papers on this general 
theme are by E. H. Linfoot [99] and E. Halphen [73a]. 

4.7. Recent proposals by Italian authors other than Gini. We have already 
discussed the early suggestions of Benini (Section 3.3) and the extensive pub­
lications by Gini (Section 3.7). Since then, the Italian statistical literature has 
been replete with articles about one aspect or another of the measurement of 
association. Nearly all of this literature has been derivative from Gini's 1914-16 
publications; the interested reader can find some key references in Section 3.7. 
We shall not attempt to give a complete outline of this literature, but some of 
the more interesting articles that have come to our attention will now be listed. 

Salvemini. A prolific writer on the theme of measures of association has been 
T. Salvemini. In [122], he surveyed parts of the field, and suggested some new 
expressions for Gini's measures in the asymmetrical and unordered qualitative 
case. In [123], Salvemini discussed the calculation and application of measures 
of association; the case in which one polytomy is ordered, while the other is 
not, received consideration. More recently, he has presented [125] an extensive 
discussion of the whole field of measures of association. References to many 
other papers by Salvemini may be found in the three articles cited above. 

Bonferroni and Brambilla. C. E. Boriferroni has given [12a] a detailed dis­
cussion of a number of measures of association, emphasizing relations between 
the p"",'s, Pa.'S and p.b'S, and pointing out problems and concepts that arise in 
the three-way cross classification. Another article by Bonferroni in this area is 
[13]. Closely associated is the work of F. Brambilla [14] who presented a 
systemic discussion of the field giving particular emphasis to the effects of 
holding marginals fixed or not and to three-way cross classifications. 

Faleschini. Particularly interesting for us is an article by L. Faleschini [44]. 
His approach is to consider the most probable cell in the bth column, and to 
compare its conditional probability with some kind of average of the column 
conditional probabilities in the same row. Thus, if a*(b) is defined by 

(all a), 
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Faleschini considers the differences 

PIJO(b)b PIJo(b)b' 
Db = -- - some average of-- (b' = 1, ... , (j). 

p·b p·b' 

Finally the Db'S are averaged in some way. Thus two averages can be rather 
arbitrarily introduced. If in the first (that of the conditional probabilities) we 
weight by P .b' (b' ;;tf b) and 0 (b' = b), and if in the second (that of the Db'S )we 
weight by p.b, we obtain, following Faleschini, 

~ PIJO(b)b - PIJO(b).p.b • 

b 1 - p·b 

Faleschini appears to feel that this kind of measure should only be used when 
PIJo(b)b/P'b?:..PIJo(b)b'/P'b' for each band b', but we are not wholly clear about his 
intent. One difficulty with Faleschini's suggestion is 'that of interpreting aver­
ages of conditional probabilities. Nonetheless, Faleschini's discussion [44] is in 
terms of a probability model, the drawing of colored balls from urns. 

Andreoli. Finally, we wish to mention two articles by G. Andreoli, [1] and 
[2]. Among the topics discussed is that of association between characteristics 
of one individual and a group of individuals, for example between occupation 
of father and occupations of his several sons. 

4.8. Problems of inference discussed by Wilson, Berkson, and Mainland. We 
should like to call attention to three papers in the medical literature that are of 
interest in connection with measures of association, especially with respect to 
the very difficult problem of inference from one population to another. 

The first is by E. B. Wilson [146]. Wilson emphasizes the importance of 
specifying the population carefully. For example, consider the 2X2 table 

Dead with evidence Not [dead with evi-
of cancer dence of cancer] 

Dead with evidence of tuberculosis 

Not [dead with evidence of tuberculosis] 

If this table is filled in from the data of a large number of autopsies (so that all 
individuals represented in the table are dead) one may obtain a very different 
picture than if the table is filled in from the entire population, alive at a given 
time and observed one year later. 

The second paper is by Joseph Berkson [7]. It considers examples like the 
above with emphasis on differential selection as a cause of confusion. Berkson 
proposes a specific mechanism for differential selection in the case of one study 
of the relation between smoking and lung cancer. 

The third paper is by Donald Mainland [106]. He gives in considerable de­
tail an example showing how differential selection can lead to a grossly fallacious 
inference. 

4.9. Measures based on latent structures. We have already discussed the 2X2 
case measures of association based on latent structures that have been sug-
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gested by Peirce (Section 3.1), and Benini (Section 3.3). Both authors sug­
gested that the observable 2X2 cross classification might be regarded as an 
average or mixture of two or more underlying cross classifications having spe­
cial characteristics, e.g., independence. The underlying cross classifications are 
those of the latent classes. One may then take as a measure of association a 
numerical characteristic of the latent class probabilities together with the 
averaging or mixing weights, provided that this characteristic is expressible as 
a function of the four probabilities in the observable cross classification. The 
latent class structure, which may be considered as either real or fanciful, then 
provides an interpretation for the proposed measure of association. 

LazarsJeld and Kendall. More recently, Paul F. Lazarsfeld has written ex­
tensively about latent class structures; it was indeed Lazarsfeld who introduced 
the term "latent structure." Although much of Lazarsfeld's work on latent 
structures has been concerned with much broader problems, he and Patricia 
Kendall [88, Appendix A] have discussed measures of association based on 
latent classes in the 2X2 case. We describe first their "index of turnover." 

The sort of 2X2 cross classification that Lazarsfeld and Kendall discuss 
might result from asking people the same yes-or-no question at two different 
times. The supposed latent structure is that there are really two classes of 
people in the population of interest, those whose latent attitude towards the 
question is "Yes," in proportion K 1, and those whose latent attitude is "No," 
in proportion K2 = 1-K 1• The actual answers that people give do not, however, 
always express their latent attitudes, since they may be temporarily swayed in 
the other direction, may misunderstand, and so on. Suppose that the "Yes" 
people answer "No" with probability x, and that the "No" people answer "Yes" 
with probability y. Responses are supposed independent for the people in a 
given class. Further, in order that the latent structure make sense, we suppose 
that x and y are ~!. 

If, now, we choose at random a member of the population, the following 
four probabilities, arranged in 2X2 form, describe the distribution of his two 
responses: 

Second answer 

Yes No Totals 

Yes pn =K,(l-x)'+K21/' plt =K,(1-X)x+K21/(l-y) Pl' =K,(l-x) +K21/ 
First Answer 

No P21 =K,x(l-x) +K,(l-y)y p .. =K,X'+K,(1-y)' p,. =K,X+K.(l-y) 

Totals P' I =K,(l-x) +K21/ P' .=K'X+K,(l-y) 1 

This is the observable 2X2 cross classification. Following our general approach, 
we suppose it known and postpone discussion of sampling problems. Note that 
P12=P21 and that Pi. =p.i (i= 1, 2). There are two independent probabilities 
among the four of the 2X2 table, and three independent parameters of the 
latent structure, so one cannot hope to express these parameters in terms of the 
probabilities. If, however, one assumes that x =y, i.e .. , that the probability of a 
deviant response is the same for both the "Yes" and "No" latent classes, then 
the core of the above table simplifies to 
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Plt=z(l-z) 

pu=-z(l-z) 

Hence x=![1 ± v'1-4PI2]. Since we have assumed x~!, the minus sign should 
be chosen. Thus x=![I- v'1-4p12] measures an aspect of association that has 
a. real interpretation in the context of the stated latent structure, since x is 
the probability of a deviant response. Also 2x(l-x) is the probability that a. 
random person answers the question differently at the two times; whence the 
descriptive term "turnover." And 1-2x(l-x) is the probability that a random 
person answers the question similarly. 

One can also easily express KI in terms of the p's, since 

KI = (Pl. - x)/(1 - 2x) 

1 2pI. - 1 
= - + -::-';:==== 

2 2v'1 - 4P12 

Further, independence obtains if and only if either KI=O or 1, or x=l. Thus 
x measures an aspect of association, unless KI =0, 1. 

A serious difficulty with the above latent structure is that it places severe 
limitations on the p's; only a limited set of 2 X 2 cross classifications can be fit 
by it. In fact, it is necessary and sufficient that 

(1) PIt ~ 1, (2) P21 = P21, and (3) Pll ~ PI·P·I 

for a 2X2 cross classification to be describable in terms of the above latent 
structure. 

Kendall and Lazarsfeld also discuss a more general measure, appropriate to 
some cases in which PI2r6P21, by enlarging the model to embrace three, rather 
than two, latent classes with special characteristics. In order to exemplify the 
possibilities, we should like to suggest a new measure that may be more ap­
propriate to some cases in which PI2r6P21. Which measures to use, if any, de­
pends of course on context. The measure we shall now describe might be ap­
propriate when two closely related questions are both asked once, rather than 
when the same question is asked twice, and we describe it in these terms. 

Suppose that on question 1 people give deviant answers (e.g. a "yes" person 
answers "no") with probability xI~l, and that on question 2 they give deviant 
answers with probability X2~!. The probabilities of deviant response do not 
depend on the class to which a person belongs. In all other respects the latent 
structure is the same as before. We then have three independent parameters, 
K l , Xl, and X2 for describing our structure, and the 2X2 table becomes 

Answer to question 2 

Yes No Totals 

Answer to Yes pu =KI(1-Zl) (I-x,) +K""lx. PII=KI(I-zl)XI+KIZ1(I-Xl) PI· =KI(l-xI) +K""I 
question 1 

No PI! =K!XI(l -XI) +K.(l-Zl)X. PIS =KlZlX.+K.(l-xl)(l-Xl) p,. =KlXI +K.(l-xI) 

Totals p. I =KI(l-Xl) +K"". p. ,=KIXI+K.(l-Xl) 1 
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We may now express K I , Xl, and X2 in terms of the p's; and Xl and xr-thus 
expressed-are interpretable measures of association in terms of the supposed 
latent structure. They are the probabilities of deviant responses to the two 
questions. In order to get a single measure, one might take the average of Xl 

and X2; that is, the probability of deviant response to one of the two questions, 
which one to be decided by the toss of a fair coin. Or one might use XIX2 

+(I-xI)(I-x2), the probability that a random person answers the two ques­
tions similarly. 

It is easily seen from the above table that 

Pl. - KI 
Xl = , 

1 - 2KI 

and that 

Hence 

KI = HI ± vI - 4R] 

and we see that, for our latent structure to hold, R, as a function of the p's, 
must be ~i. Substituting in the above expressions for Xl and X2, we obtain 

1 2pI. - 1 
Xl = - + ~-:==~ 

2 2Vl - 4R 

1 2p.I - 1 
X2 = 2 + 2vl - 4R 

There remains the question about sign choice in the solution of the quadratic 
for K I • We want to be able to make the same choice for both Xl and X2 so that 
Xl and X2 are ~i. This means that PI.-! and p'l-i must have the same sign 
in the sense that (pI.-i)(p'I-!)~O. The necessary conditions thus far sug­
gested come to (1) PI2+P21~i, (2) (pI.-!)(p.I-!)~O, and (3) Pll~PI·P·I. 

Note that if Pl2 = P21, then Pl· = P ,1, Xl = X2, and 

Hence 

1 - 4P12 - 4Pn + 4PI. 2 (1 - 2pd2 
1 - 4R = --------

1 - 4Pl2 1 - 4Pl2 

1 2pI. - 1 1 
Xl = X2 = - + vI - 4P12 = - [1 ± vI - 4P12] 

2 2(1 - 2pd 2 

and the minus sign must be chosen, to obtain the same result as in the earlier 
structure. So the structure now being discussed does generalize the earlier one, 
giving us two turnover indexes. 

For the present structure, independence obtains if and only if KI is 0 or 1, 
or if either Xl or x2=i. Thus we see again that Xl and X2 measure aspects of 
association, unless KI = 0, 1. 
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Necessary and sufficient conditions for the present structure to be possible 
may be expressed in various ways. One such set of conditions is the following 
pair: 

(1) 

(2) 

Pn - PI·P·I [ o :$ -1------ :$ Min PI·P2., p.IP.2] 
- 2(P12 + P21) 

(Pl. - !)(P·I - !) ~ o. 
4.10. More recent work on measures of association in meteorology. Gringorten, 

Bleeker, Brier, and others. In Section 3.1, we discussed measures of association 
suggested by Peirce, Doolittle, Koppen and others for meteorological problems. 
Meteorologists have of course long been interested in the accuracy of weather 
forecasts, and they have suggested many measures of association between the 
predicted weather and the weather that actually occurred. 

We shall not attempt to survey the large literature of this field in detail, 
especially since three relatively recent articles provide extensive reviews of it. 
The first, by R. H. Muller [109], gives abstracts of some 55. relevant publica­
tions prior to 1944, including most of those described in Section 3.1. (See Clay­
ton [23] for criticism of Muller's abstracts of Clayton's work.) The second, by 
W. Bleeker [10], includes references to a number of continental articles not 
mentioned by Muller, and analyzes a number of proposed measures in detail, 
especially as regards the behavior of a predictor who knows that his predictions 
will be compared with actuality by a particular measure. The third, by G. W. 
Brier and R. A. Allen [17] discusses key publications appearing up to 1951. 
In the following paragraphs, we want to mention a few articles of particular 
interest to us, especially some published since the three surveys cited above. 

The simplest case of interest to the meteorologists is where there is no order 
in the classifications and an asymmetrical interest in the two classifications. 
Sometimes the classifications are different, as when one is considering a par­
ticular qualitative variable as a predictor of qualitative weather. For this case, 
a measure of association based on the Shannon-Wiener information notion has 
been suggested by j. L. Holloway, Jr. and M. A. Woodbury [81] and has been 
used by several meteorologists, notably I. I. Gringorten and his colleagues. We 
have referred to it in Section 4.6. Gringorten [70, pp. 69-70] also suggests 
independen tly the same proportional prediction measure described in [66, 
Section 9]. This measure is very natural if we think of the possibility of making 
probabilistic, rather than categorical, forecasts, a possibility to which we shall 
recur in a few paragraphs. Gringorten's article also gives a brief general survey 
of measures of association in the meteorological context. 

Sometimes the two classifications are the same, as when one is considering 
association between a categorical forecast and a categorical event, with both 
forecast and event classified in the same way. In this case of "forecast verifica­
tion" both the above measures may be used, as well as others that take the 
identity of the two clasf;ifications explicitly into account. The use of associa­
tion measures in connection with meteorological prediction, both with and 
without order taken into account, is considered by van der Bijl [140]. 

A more complex situation is that in which some third classification is brought 
into the picture. One important example is the three-way classification: forecast 
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weather-observed weather-weather at time of forecast. Here interest is 
usually centered in the extent to which the forecaster can improve on persist­
ence forecasting or on forecasting based on climatic information conditional 
upon weather at forecast time. Some materials referred to in the above para­
graphs bear upon this situation; we should also like to cite two articles by 
Gringorten, [68] and [71 a ], and a closely related report by Gringorten, Lund, 
and Miller [69]. These references use scoring schemes with scores based on 
probabilities. Gringorten [68] makes it very clear that the appropriate measure 
depends upon the question being asked. In [71], Gringorten works on the 
sampling problem for measures based on scores. 

An interesting problem is that of the construction of meaningful measures of 
association when the forecast is not categorical, but rather is itself a discrete 
probability distribution over a set of weather categories. Thus, for example, 
a prediction might be 

No rain (probability .1) 
Light rain (probability .6) 
Heavy rain (probability .3) 

and this prediction would be compared with that one of the three possibilities 
that later actually occurred. Suggestions for this kind of forecast prediction 
appear to go back at least to World War I, but it seems to have become of 
general interest only recently. Two recent articles relating to probabilistic 
forecasts are by G. W. Brier [16] and W. G. Leight [98]. 

If we attempt to construct a measure of association between probabilistic 
forecasts and the actual events later observed, we are faced with association 
between an essentially continuous distribution on a k-1 dimensional simplex 
(k categories, probabilities for each that sum to one) and a discrete distribution 
on k points (for the actual events). 

Several articles take up Peirce's 1884 theme relating to economic losses as 
an important factor in evaluating forecast utility. For the 2X2 case, we refer 
to E. G. Bilham [9], H. C. Bijvoet and W. Bleeker [8], J. C. Thompson [135], 
J. C. Thompson and G. W. Brier [136], and G. W. Brier [18]. Gringorten 
[68 and 71a] considers more general cases by means of scores based directly 
on net losses. 

4.11. Association between species. Forbes, Cole, Goodall. In the ecological 
literature there is a series of articles dealing with 2X2 cross classifications of 
the following kind: 

NUMBERS OF AREAS IN WHICH SPECIES A AND 
SPECIES B ARE OR ARE NOT FOUND 

B 

Found Not Found 

Found Nu Nit 
A 

Not Found Nil Nu 

fa 
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Thus, for example, in Nu out of n marshes examined, grasses of species A and 
B are both found, while in N 12 out of n marshes, species A is found but not spe~ 
cies B. 

A review and bibliography of ecological articles dealing with measures of 
association in this context is given by Goodall [64, pp. 221-3]. The series seems 
to have started with an article by Forbes [49] in 1907, followed by a long gap, 
and then a number of more recent articles. Of these, a particularly extensive 
one is by Cole [28], in which Benini's measure (see Section 3.3) was independ­
ently proposed. 

4.12. Association between anthropological traits. Tylor, Clements, Wallis, 
Driver, Kroeber, Chretien, Kluckhohn, and others. We have already discussed 
(Section 4.4) a proposal by the anthropologist, F. Boas. We now turn to a 
more special case than the one discussed by Boas, the 2X2 cross classification. 
Writers in the fields of anthropology and linguistics have long been concerned 
with 2X2 cross classifications similar to those discussed in the last section. 
The earliest paper of which we know that deals at all with measures of associa­
tion in these fields is by Edward B. Tylor [139] in 1889. Tylor discussed many 
examples of association between cultural traits, some dichotomous and some 
trichotomous, but he contented himself with observing sizable apparent devia­
tions from independence and did not suggest any numerical measures of asso­
ciation. In the ensuing discussion Francis Galton said [139, p. 270] that 
" ... the degree of interdependence might with advantage be expressed in 
terms of a scale in which 0 represented perfect independence and 1 complete 
concurrence." We now list and discuss briefly those subsequent papers of which 
we know in this area that seem to us most germane to our survey. 

In 1911, Jan Czekanowski [30], explicitly carrying Tylor's work forward, 
discussed the use of Yule's Q in ethnology and anthropology. Czekanowski 
also published a number of further papers dealing with 2X2 classifications. 

In 1926, Forrest E. Clements and others [24] used the values of x2 and the 
resulting P-values in an examination of traits held in common by various 
Polynesian societies. An interesting controversy between Clements and Wilson 
D. Wallis [25, 143] followed. Wallis attacked Clements and his coauthors for 
using oversimplifying statistical methods and for drawing unjustified anthropo­
logical conclusions by these methods. Another article by Clements [26], dis­
cussing Q and q, prefixed by the appropriate ± sign, appeared in 1931. A quite 
recent article [27] by Clements goes over the same ground with added com­
ments on subsequent literature. 

In 1932, H. E. Driver and A. L. Kroeber [38] commented on the Clements­
Wallis controversy, and used the following three measures in analyzing associa­
tion between various pairs of societies: 

pu{_1 + ~ \, 
2 ~l' p.J 

pu 

..; Pl·P·1 

Pu , 

The 2X2 cross classifications to which these were applied referred to popula­
tions of traits, and took the following form: 
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Society B 

Has Has not 

Has PH Pl2 PI-

Society A 
Has not P21 P2Z Pi-

P-I P-2 

so that P12, for example, is the proportion of traits observed present in Society 
A and absent in Society B. 

In 1937, A. L. Kroeber and C. D. Chretien [94] applied 2X2 measures of 
association to linguistic classification. Several measures were discussed and 
compa.red. Such application to linguistics continu~d in several articles, notably 
[20]. A recent article by Chretien in this line is [22]. It is interesting to observe 
that the article immediately following [22], by Joseph H. Greenberg [67], is 
one of the few instances we know in which descriptive statistics are constructed 
so as to have operational interpretations in the sense that we have discussed. 
Greenberg's suggestions relate to measuring concentration in a single classifica­
tion, or multinomial, population. 

In 1939, a critical survey of the application of measures of association to 
ethnological data was published by Clyde Kluckhohn [90]. This very inter­
esting article contains an extensive bibliography, and it marshals many argu­
ments for and against the use of measures of association in anthropological 
contexts. 

Driver [39], in the same year, compared in detail formal properties and rela­
tions between some eight 2 X2 measures of association. He was much concerned 
with the effect of nonuniform marginal distributions on comparisons between 
values of 2 X 2 measures. 

In 1945, Chretien [21] discussed a number of basic points, including several 
analyzed by Kluckhohn, regarding the use of measures of association. Here, 
for almost the first and only time in this line of papers, we find the problem of 
interpretation raised as Chretien says (p. 488): "Primary in importance, it 
seems to me, is the need to determine more precisely the meaning of the scale 
of association. All association studies to date have confined their attention to 
the high positive values." 

Finally, we wish to cite a 1953 survey article by Driver [40]. In its section 
on ethnology and social anthropology, there appears a discussion of measures 
of association for the 2 X 2 case. 

4.13. Other suggestions. We conclude by listing a few other suggestions relat­
ing to measures of association that do not fall naturally into the above classi­
fication. 

Harris, Pearson. In a number of articles by J. A. Harris and others, [74], 
[75] and [76], there is a discussion of the following situation: Sometimes the 
existence of observations (individuals) in certain cells of a cross classification 
table is arithmetically, physically, or otherwise impossible. Harris and his co­
authors discuss the effect of this inherent emptiness of some cells on certain 
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traditional measures of association, and suggest modifications of these meas­
ures. K. Pearson, commenting on Harris' papers in [113], discusses the com­
putation of the coefficient of mean square contingency when careful a priori 
consideration indicates that for certain cells the appearance of individuals in 
those cells is impossible. With the use of measures of association that have oper­
ational meaning, rather than the coefficient of mean square contingency, the 
occurrence of zero frequencies in certain cells does not seem to us to .be of special 
significance. See Sec. 2.1. The a priori considerations leading to the belief about 
zero frequencies may, however, suggest alternative ways of setting up the 
classifications that are more meaningful. 

Irwin. In 1934, J. O. Irwin [84] commented on measures of association and 
emphasized the importance of relating the use of such measures to the goals 
of the particular investigation at hand. He says (p. 87) that " ... we should 
[not] do away with correlation coefficients or other measures of association, 
but should try to make the end point of our statistical analysis not a single 
coefficient which may be hard to interpret, but a result bearing a 'physical' 
meaning; the more easily the result may be understood by an intelligent lay­
man, the better we should regard it as expressed." Irwin ends his article by 
describing a particular case of careful and useful analysis based on measures of 
association applied to the data in various ways. 

It seems to us that, when the operational interpretation viewpoint towards 
association measures is taken, one is automatically influenced away from sterile 
arguments about which measure is "best." For if different measures reflect 
different aspects of the population, no one is best in any abstract sense (al­
though one may be most appropriate in a given case) and there is no reason 
why more than one should not be used. An analogy is to ask about measures 
of size for human beings. One might suggest weight, height, volume, girth, etc., 
but no one of these is best except perhaps in a particular context. 

Lakshmanamurti. In [97], M. Lakshmanamurti suggested a rather complex 
measure of association for the 2X2 case and compared it with Yule's Q. 

Fairfield Smith. In a recent article [126a] H. Fairfield Smith has complained 
entertainingly about the difficulty of interpreting conventional measures of 
association. Most of his article shows by example how one may compare two 
sample cross classifications by forming simple chi-square tests that emphasize 
some specific aspect of possible difference between the cross classifications. 

We end this paper with a quotation [126a, pp. 72-3] that expresses Smith's 
dismay about the vague or nonexistent meaning of most association measures. 

"What can be the use to know that ghosts in my lord's and lady's chambers each wore 
a sash with the symbol .6 if we do not know how the sash or its decoration may reflect 
the more earthy bodies from which the ghosts have been supposed to emanate?" 
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The population meaeure8 of ae80ciation for cross cl&8Bifications, dia­
cussed in the authon' prior publications, have sample analogue8 that 
are approximately normally distributed for large 8amples. (Some 
qualification8 and restrictions are necessary.) These large 8ample 
normal diltribution8 with their aesociated standard error8, are derived 
for VariOUI meaeurel of aelociation and various methods of 8ampling. 
It is explained how the large lample normality may be uled to teat 
hypotheses about the meaeures and about differences between them, 
and to construct correllponding confidence intervale. Numerical results 
are given about the adequacy of the large lIample normal approxi­
mationl. In order to facilitate extension of the large lample results to 
other meaeurell of ae80ciation, and to other modes of lampling, than 
those treated here, the baeic manipulative tools of large lample theory 
are explained and illu8trated. 
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1. INTRODUCTION AND SUMMARY 

PROBLEMS connected with measuring the degree of association between two 
or more cross classifications or polytomies were considered by us in [8]. 

A number of possible measures or indexes of association were discussed for 
situations in which the meaning of the term "degree of association" is not com­
pletely clear-cut within some precisely stated model. The central theme of 
[8] was that measures of association should have operationally meaningful 
interpretations that are relevant in the contexts of empirical investigations in 
which the measures are used. l 

A supplementary discussion [9] presented further measures of association, 
together with historical and bibliographical material. 

The discussion in references [8] and [9] supposed almost throughout that the 
parent population is known, so that no sampling problems arise. In the present 
paper, we develop, by asymptotic (i.e., large sample) methods, approximate 
sampling theory for the measures considered in [8]; without having such a 
theory in practical form, the measures of [8] are of limited use. We use this 
sampling theory in connection with testing .hypotheses about the measures 
and establishing confidence intervals for the measures. We also include here 
some material about the adequacy of the asymptotic approximations; we ex­
pect to present further material in a later publication. 

The notation of [8] will be used freely, but we shall generally try to re­
capitulate for the reader's convenience. We restrict ourselves to sample sizes 
fixed in advance, and most, but not all, of this paper deals with the case of two 
polytomies or cross classifications, A with a classes, and B with {3 classes. The 
population or true frequency for the cell with A classification Aa and B classi­
fication Bb is denoted by Pab; we set Pa· = Lb Pab and P·b= La Pab. 

In developing an asymptotic sampling theory for the measures proposed in 
[8], a number of considerations arise. 

i. Sampling methods. There are several possible sampling methods. For ex­
ample, one may choose a random sample, in either the sense of "with replace­
ment" (infinite popUlation) or "without replacement," from a popUlation of 
individuals that is cross classified into the a{3 cells obtained by crossing classi­
fications A and B. In this case, the sampling method leads to a multinomial 
(with replacement) or to a generalized hypergeometric (without replacement) 
distribution. 

I The measures of association considered in our papers may be appropriate in situations where little or no 
structural information is available about the true relative frequencies in the cells of the cross classification. If, con­
trariwise, a structural parametric model is assumed, it will often be the case that one or more of its parametera 
will have obvious meanings as measures of 8.II8OCiation within the terms of the assumed model. 

We do not think it meaningful to speak of the most appropriate measure of association for most of the un­
structured situations we have in .rond. What is central is that the association measures used should have meaningful 
interpretations; it is quite likely that several measures, each with its own interpretation, might all be useful in a 
given situation. 
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Alternatively, one might sample independently within each Aa class or row 
of the A XB cross classification, obtaining a independent multinomial or 
generalized hypergeometric distributions. Then the relative sample sizes for 
the a classes of classification A would be of importance. Similarly, one might 
sample independently within each Bb class or column. There are still other 
possibilities, but we shall not deal with them here. 

For the sake of simplicity, we assume infinite populations throughout; that 
is, sampling with replacement in the technical sense. Much of the work refers 
to the case of a multinomial sample over all the a(3 cells, but we do consider 
some cases of independent sampling in the rows or columns. 

ii. Auxiliary knowledge. Auxiliary knowledge may vary considerably. Thus 
one may know marginal totals, the Pa.'S, and/or the p.b'S. (For treatments of 
this, see [5], [25], and [6].) Or one may know the values of the b subscripts 
maximizing Pab without actually knowing the numerical values of the p's. We 
generally assum~ no auxiliary knowledge, except for uniqueness assumptions to 
be described, but in Section 4 we do consider some cases in which auxiliary 
knowledge is utilized. 

iii. Choice of estimators. The question of what estimator to use for a given 
measure is resolved here by using the obvious sample analogue of the popula­
tion measure. In all cases but one, (4.2.1), this is the maximum likelihood 
estimator.2 For testing and confidence intervals we again have used intuitively 
straightforward procedures based on the point estimators and their distribu­
tions. 

iv. Uniqueness of maxima. Many of the asymptotic results depend on as­
sumptions like this: there is just one value of b maximizing P.b; we shall ge­
nerically say that such assumptions are those of uniqueness of maxima. Even 
when there is a unique value of b maximizing P.b, there may be other values of b 
for which P.b is very near the maximum. In such cases, particularly large sample 
sizes may be needed before the asymptotic distributions we discuss become 
good approximations to the actual distributions. 

v. Asymptotic approximations and their possible modifications. For each 
estimator and sampling method, our procedure is to find a function of the 
sample, an approximate standard error (ASE), such that the difference between 
the estimator and the true value of the measure being estimated, divided by 
the ASE, is for large samples approximately unit-normal (normal with zero 
mean and unit standard deviation); 

(estimator - true value)/(ASE) ~ N(O, 1) 

for large samples.s Given such an approximation (corresponding to convergence 
in distribution), one may modify the estimator, the ASE, or both in many ways 

• This paper studies multi-parameter situations. and. in fact. we generally consider afJ -1 independent param­
etel'll. one for the probability of each cell of the cross classification. modified by the restriction that these prob­
abilities sum to one. We adopt the usual convention that. if (q, . .•. , 8k) is the maximum likelihood estimator of 
(91 ••••• 9k), then by "the maximum likelihood estimator of f (91 ••••• 9k)" we mean f (q, •...• Bk)' This con­
vention is justified by the invariance of maximum likelihood estima.tion under reparameterization. 

a Other approximations than normal one. are in principle possible. 

78 



MEASURES OF ASSOCIATION 313 

without destroying mathematical convergence to unit-normality, but with 
possible improvement in the normal approximation for finite samples. It is 
also possible to consider a transformation of the true value and the estimator. 
Such modifications or transformations have been widely used to improve 
asymptotic approximations. (For example, corrections for continuity may be 
viewed from this standpoint.) We shall present a few possible transformations 
with their corresponding ASE's, and we expect to present further material in a 
later pUblication. 

2. NOTATION AND PRELIMINARIES 

A sample of n individuals is drawn in some specified manner. The A and B 
classifications of each member of the sample are observed. Let Nab be the 
number of sample individuals that fall in the (Aa, Bb) cell; that is, Nab is the 
number of individuals having A classification Aa and B classification Bb. Thus 

.. fJ 

:E:E Nab = n. 
a=1 b=1 

In th~ case of nonrestricted sampling, multinomial over the entire OIX{3 

cross classification table, the marginals will be denot&d in the conventional 
manner, 

(2.1) 
a 

In most other sampling methods, at least one set of these marginals will not 
be random but fixed in advance. In general, we shall use capital Latin letters 
for random variables and lower case Latin letters for corresponding fixed 
numbers, e.g., na. = :Eb Nab for fixed row marginals. The Latin letters to be 
used will, whenever feasible, be related to the Greek letters used for correspond­
ing population quantities. 

Thus Rab (corresponding to Pab) will be used for the proportion, Nab/n, of 
observations in the (Aa, Bb) cell, Ra. for Na./n=:Eb Rab (when the row 
marginals are random), and so on; :E :Eab Rab= 1. It is convenient to work 
with the Rab's for present purposes, but the more important formulas will also 
be given in terms of the Nab'S for convenience in applications. Special mention 
must be made of the notation for maxima. We denote by N am the maximum 
over b of Nab, with analogous notation for other maxima as follows: 

N am = Max Nab 

N mb = Max Nab 
a 

N m. = Max N a. (or nm. = Max na.) 
a a 

N.m = Max N.b (or n.m = Max n.b). 
b b 
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The notation for Ram, R.m, etc. will be similar. It should be noted that a symbol 
like "Nm ." is a single unit, meaning "the largest N a .". 

From now until further notice (in Section 4), we assume multinomial sam­
pling over all the a{3 cells. We shall throughout be considering asymptotic 
behavior as n-Ht:> , so that in principle "n" should be attached to all sympols 
for random variables to indicate that we have in mind a sequence of samples: 
N~~. For the sake of simplicity, however, we shall omit the "n." 

One fact is basic: the a{3 random variables ,/1i(Rab -Pab) jointly converge in 
distribution4 to the multivariate normal distribution with all means zero, and 
with variances and covariances given by 

(2.3) 

Cov[Vn(Rab - Pab) , vn(Ra'b' - Pa'b')] = - PabPa'b' (a ~ a' or b ~ b'). 

(These means, variances, and covariances also are correct for any finite n.) A 
reference to this basic fact is p. 419 of [2]. It follows from the above that each 
Rab converges in probabilitr to pab. 

We now make, until further notice, the following assumptions about the 
population: 

For each a, Pam = Pab for a unique value of b. 
For each b, Pmb = Pab for a unique value of a. 
p.m = P.b for a unique value of b. 
pm.=Pa. for a unique value of a. 

(2.4) 

These are the assumptions mentioned in the preceding section. Without them 
no useful asymptotic theory for the distribution of estimators of the A co­
efficients seems possible at the present time. (We need not always make all four 
assumptions; for example, in the case of Ab the assumptions relating to Pam 
and P.m will suffice. None of these uniqueness assumptions are needed in the 
case of 'Y.) An assumption that will be made throughout is that the population 
or true value of the measure of association in question is well defined. 

Under these assumptions, and by convergence in probability, the probabil­
ity that Ram = Rab approaches unity for that value of b such that pam = pab. 
Similarly, the probability that R.m = R.b approaches unity for that value of b 
such that P.m = P·b. Hence, for our asymptotic purposes, we may act as if Ram 
is taken on at that value of b such that Pam=Pab (see Section A4). Similarly, 
we may act as if R.m is taken on at that value of b such that P.m=p.b. The same 
statements hold of course for Rmb and R.m.6 

• This conVeTgenct in distribution means that the probability that the -In (Rab- Pab) together satisfy any fixed 
(measurable) set of conditions has the limit, lIB n- 00, given by the probability that random variables Xab satisfy 
the same set of conditions, where the Xti,b are governed by the indicated multivariate normal distribution. To say 
tbat Rab converges in probability to Pab means that the probability that Pab -,, :O;Rab :O;Pab +', approaches unity as 
n -+ 00, for any positive fl and et , 

• Exact distribution theory for the observed maximum frequency in a sample from a multinomial distribution 
seems intractable. Related material is discussed in [10J, [16J, and [17J. 
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It would be impracticable to attempt to give here asymptotic distributions 
relevant to estimators of each measure discussed in [8] under many sampling 
methods and many assumptions about auxiliary knowledge. Rather, we shall 
present distributions, for cases that seem important to us, in a way that we hope 
will enable others to work out similar asymptotic distributions as may be 
required. Of the various sampling methods, probably the one most frequently 
found is multinomial sampling over the entire AXB double polytomy; hence 
we begin with, and devote most space to, that method. 

Although this paper is organized around traditional ideas of hypothesis 
testing and estimation, the asymptotic distributions presented may also be 
useful in connection with other approaches to statistical inference, for example, 
the likelihood-ratio and the neo-Bayesian approaches. 

3. MULTINOMIAL SAMPLING OVER THE WHOLE DOUBLE POLYTOMY 

3.1. The Index Ab 
An index of association called Ab, suggested in [8] as appropriate in some 

situations where asymmetry obtains and order is immaterial, is 

LPam - p.m 
a 

Ab=------· 
1 - P.m 

(3.1.1) 

This measure is the relative decrease in probability of erroneous guessing of 
Bb (when presented with random individuals) as between Aa unknown and A" 
known. 

We now discuss the maximum likelihood estimator of Ab, 

a " 
n - N.m 

(3.1.2) 

Lb is defined except when R.m = 1. We assume P.m ~ 1, and by the argument of 
Section A4 we may neglect, for asymptotic purposes, the possibility that 
R.m = 1. What to do should R.m = 1 in a finite sample will be discussed later in 
this Section. 

It is shown in Section A5 that vn(Lb-Ab) is asymptotically normal with 
mean zero and variance 

(3.1.3) 

where LT Pam denotes the sum of the Pam'S over those values of a such that 
Pam is taken on in that column in which P.m is taken on. Since we have assumed 
that no ties exist among the contenders for MaXb pab and MaXb P .b, the definition 
of L r pam is unambiguous. The variance (3.1.3) is zero if and only if Ab is zero 
or one. 

To clarify the meaning of Lr Pam we now give a simple example. Suppose 
the pab table is the 3 X 4 table 
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~ 1 2 3 4 

1 .14* .05 .04 .04 .27 

2 .04 .18* .06 .04 .32 
----

3 .04 .05 .24* .08 .41 

.22 .28 .34 .26 1.00 

where the marginal totals appear beyond the double lines. The Pam'S are in­
dicated by asterisks in their cells; P.m is .34, and L:r Pam is .24. 

It will also be convenient later to use the notation L:c Pmb to mean the sum 
of the Pmb'S over those values of b such that Pmb is taken on in that row in which 
Pm. is taken on. In the above example the Pmb'S are .14, .18, .24, .08 respectively 
from left to right, Pm- is .41, and L:c pmb= .24+.08= .32. 

\Ve shall also use the notations L:r Ram, L:c Rmb and L:r N am, L:c N mb. 
They are defined just as above, but for the Rab'S and Nab'S respectively. When 
we work in terms of the R's or N's, ties may of course exist (although we neglect 
them for purposes of asymptotic theory) and a procedure for handling them 
will be suggested in the next Section. 

It follows from (3.1.3), in a manner described in Section A5, that the follow­
ing quantity is asymptotically unit-normal (normal with zero mean and unit 
variance) : 

(3.1.4) 

under the following assumptions, some of which repeat earlier statements: 

i) Multinomial sampling over the entire double polytomy; 
ii) Pam'S and P.rn unique; 

iii) P'm:;e1 (i.e., Ab is well defined); and 
iv) Ab:;e 0 or 1. 

For computational convenience, we give another form of (3.1.4), 

(3.1.4a) 

We note that, to the present level of asymptotic approximation, if Ab=O, 
then Lb=O. (Indeed, if Ab=O, the probability that Lb=O has the limit 1.) If 
Ab= 1, then Lb= 1 without any asymptotic approximation, providing Lb is well 
defined. 

3.2. Use of Asymptotic Unit-normality 

For n large, Lb - Ab divided by an ASE is approximately unit-normal. The 
ASE, which we denote by g(Nab's) to emphasize its dependence on the sample, 
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is the reciprocal of the square root factor in (3.1.4a). Then the probability that 
(Lb-Ab)/g(Nab's) lies in an interval (c, d) is approximately <I>(d) -<I>(c), where <I> 
is the unit-normal cumulative distribution function, ubiquitously tabled. For 
example, the probability that (Lb - Ab) / g(Nab's) lies between -1.96 and 1.96 
is approximately .95. Thus we may readily set up approximate confidence 
intervals for Ab. Suppose that we seek an approximate confidence interval, 
symmetric about L b, on the I-a level of confidence. Let K,,/2 be the upper 
100(a/2)% point for the unit-normal distribution (e.g., K,,/2 = 1.96 for a = .05). 
Then 

(3.2.1) 

or, equivalently, 

Pr{Lb - Ka/2g(Nab'S) ~ Ab ~ Lb + K a/2g(Nab'S)} ~ 1 - a, (3.2.2) 

so that Lb±Ka/2g(Nab'S) gives a confidence interval approximately on the 
I-a level of confidence. If the interval happens to go beyond 0 or 1, such 
inadmissible values would be excluded. 

Similarly, we may test the null hypothesis that Ab=A~O) (when AiO);;Z!0),6 on 
approximately the a level of significance, by rejecting the null hypothesis just 
when AiO) lies outside of the interval Lb±Ka/2g(Nab'S). 

To test the special hypothesis Ab = 1, one accepts when Lb = 1 and otherwise 
rejects, for any level of significance. (See the final paragraph of Section 3.1.) Be­
cause of our level of asymptotic approximation,6 one accepts the special hypoth­
esis Ab = 0 when Lb = 0 and otherwise rejects, for any significance level. Thus, 
approximate confidence intervals for Ab, as described above, should exclude the 
poin ts Ab = 0 and Ab = 1 unless Lb = 0 or 1. In the later cases, the confidence 
interval consists of 0 or 1 (respectively) alone. 

One-sided confidence intervals and tests may be readily obtained in the 
same manner. 

It is also possible to obtain confidence intervals for the difference between the 
values of Ab in two tables. Suppose that we have two independent multinomial 
samples, one from each of the tables: {N~IJ}, {N~~}. Let L~) and A~) (i = 1, 2) 
be the estimated and true values of Ab. If the assumptions after (3.14) are satis­
fied for both tables, then 

(L (1) L(2») «1) (2») b - b - Ab - Ab 
(3.2.3) 

v'[g(N~'s)]2 + [g(N;';;'S)]2 

• The situation here is much like that of asymptotic distributions for the squared sample correlation coefficient 
or the squared sample multiple correlation coefficient [2, p. 415). When the population parameter is zero, the 
asymptotic distribution appropriate for other cases degenerates and puts all its mass on zero. By changina: the 
power of n as a scaling factor, one can often, in such cases, obtain a nondegenerate limit distribution. 

In addition to this parallelism between asymptotic distribution theory for Lb and the squared sample correla.­
tion coefficient, there is an interpretive relationship between the two population quantities. If p is the population 
correlation coefficient, then I-p2 is the ratio of "unexplained variability" in one variate, when the other is known, 
to "unexplained variability" when the other is not known. ("Unexplained variability" here refers to expected squared 
deviation around the best linear predictor and around the best constant predictor, respectively [18, p. 817].) Simi­
larly, I-N, is the ratio of ·unexplained variability" in predicting the B classification, but here measured in terms 
of error probabilities for prediction from the A classification and from nothing, respectively [8, p. 741]. 

There are, of course, differences between p' and N,. For example, p itself-unsquared-may be positive or 
negative and its sign gives information about the sense of the association. For Ab it is meaningless to speak of the 
sign or sense of association, since N, is invariant under permutations of rows (columns) among themselves. Another 
difference is that p is symmetric between the two variates while "b is not. 

83 



318 AMERICAN STATISTICAL ASSOCIATION JOURNAL, JUNE 1963 

is asymptotically unit-normal. Thus 

L~l) _ L~2) ± Ka12¥ [g(N!!)'S)]2 + [g(N~!)'S)]2 
gives a confidence interval for X~l) - X~2) approximately on the 1-0: level of con­
fidence. 

Similarly, we may test the null hypothesis xii) - xi2) = A, on approximately 
the 0: level of significance, by rejecting the null hypothesis just when the above 
confidence interval for X~l) - X~2) fails to cover A. In particular, we may test the 
null hypothesis that the difference between X~l) and xii) is zero (i.e., that 
X~l) = X~2»), on approximately the 0: level of significance, by rejecting this hy­
pothesis when the above confidence interval fails to include zero. This test of 
the null hypothesis that xii) = xi2) can be generalized in order to obtain a test of 
the null hypothesis that the values of Xb in k tables are all equal, i.e., that 
X~I) = xi2) = ... = xikl, where xii) is the true value of Xb for the ith table. First 
we note that, if the assumptions stated in Section 3.1 are satisfied for each of 
the k tables, and if the null hypothesis is in fact true, then the statistic 

k. . L (L~') - 1//[g(N!;)'s)]2 (3.2.4) 
i=l 

will have approximately (n(i)--too) the chi-square distribution7 with k-l de­
grees of freedom, where Lii ) (i = 1, 2, ... , k) denotes the estimated value of 
Xb in the ith table, n(i) is the sample size in the ith table, g(N~6's) denotes the 
estimate of the asymptotic standard deviation of L~i) (the g(N~i6's) are maxi­
mum likelihood estimates), and where 

We may test the null hypothesis that X~l) = X~2) = ... = X~l>, on approximately 
the 0: level of significance, by rejecting this hypothesis just when the statistic 
(3.2.4) is larger than the upper 1000: per cent point of the chi-square distribu­
tion with k -1 degrees of freedom. 

We digress to comment briefly on the possibility of using, not Lb, but some 
monotone transform of it for purposes of hypothesis testing, interval estima­
tion, etc. One considers such transformations in the hope of bettering the 
asymptotic normal approximation, of simplifying the asymptotic variance, or 
of making the asymptotic variance more nearly constant. We record here ex­
pressions like (3.1.4a) for three transformations; the following three quan­
tities are asymptotically unit-normal: 

7 The derivation of this asymptotic chi-square distribution (under the null hypothesis) may be broken into two 
parts. First, the asymptotic joint distribution of the k quantities like (3.1.4) is shown (via Section A2) to be the 
same as the corresponding joint distribution, but with true asymptotic variances replacing the sample estimatol'll 
in (3.1.4). Second, in the asymptotic distribution of these modified quantities, a standard (weighted) average is 
considered, along with the corresponding standard, weighted sum of squares of residuals. Finally, (3.2.4) and ita 
distribution are obtained by another application of Section A2 in a generalized form. 
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(3.2.5) 

where the logarithms are to base e, 

(3.2.6) 

[VLb - v>'b][Lb/(l- Lb)]1/22(n - N.m)/v~Nam + N. m - 2 ~r Nam. (3.2.7) 

The stated asymptotic normality follows directly from that of (3.1.4) by an 
application of Section A3. The methods of using (3.2.5)-(3.2.7) for inference 
about >'b are straight-forward analogies to the methods for using (3.1.4). 

All the further approximations in this paper may be used in the same ways 
as those described above. In every case the estimator of the measure of asso­
ciation minus its true value, all divided by a function of the Nab'S, is approxi­
mately unit-normal for large n. Hence the above description of statistical 
procedures will not be repeated each time. 

We now give a numerical example of the use of the suggested approximation 
based on (3.1.4). We drew a random sample of 50 from the population given 
by the table in Section 3.1. 

Random sample of 50 from above population 

Numbers are observed Nab'S, and marginal Na.'s and N.b'S 

b 
1 2 3 4 

1 8 5 3 3 19 
----------

a 2 0 8 1 0 9 
----------

3 0 4 14 4 22 
----------

8 17 18 7 50 

~ N am = 8 + 8 + 14 = 30, N. m = 18, ~r N am = 14 

30 - 18 12 
Lb = 50 _ 18 = 32 = .3750 

• / (50 - 18)3 
g(Nab's)-l = 11 (50 - 30) (30 + 18 - 2 X 14) = 9.0510 

1.96/9.0510 = .2166 

95% approximate confidence interval: .1584~~~ .5916. 

The confidence interval obtained is rather wide, but on the other hand the 
sample is not very large relative to the number of cells and their probabilities. 
The population value of >'b, 1/3, is covered by the confidence interval for the 
chosen sample. 
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When samples are of moderate size, like the above, one often obtains ties 
among the maximum N.b'S and among the maximum Nab'S for some a or a's. 
Although these ties disappear asymptotically by our assumption of no ties 
among the true maximum p.b'S or Pab'S, ties must nonetheless be dealt with in 
real samples. Ties will affect our suggested procedure only via L r N am ; they will 
not affect Lb itself, but only g(Nab'S). For example, consider the following sam­
ple drawn from the same population as above. Here L r N am might be 10 
(if column 2's N. 2 =16 is taken as N. m ) or 14 (if column 3's N.3=16 is taken 
as N.m). The sample and the two alternative computations are shown below. 

Second random sample of 50 from above population 

b 
1 2 3 4 

1 9 2 1 1 13 
----------

a 2 0 10 1 0 11 
----------

3 2 4 14 6 26 
-----------

11 16 16 7 50 

33 - 16 
Lb = = .5000 

50 - 16 

g(Nab's)-l = either • / 343 

11 17X(33+16-2XlO) 
¥ 343 

or 
17X (33+ 16-2X 14) 

= either 8.9288 or 10.4926 

95% approximate confidence interval: 

either .2805::::; Ab ::::; .7195 

or .3132::::; Ab ::::; .6868. 

When ties occur they may be resolved by the flip of a fair coin; this is the 
method used in the random sampling discussed in Section 3.8. Other methods 
are possible and perhaps better. For example, one might average the two or 
more possible values of g(Nab's) , or one might take the largest possible value of 
g(Nab'S). This topic requires further investigation. 

Another problem that may arise in real samples, even when the assumptions 
for our asymptotic statements are true, is that N.m may be n (i.e., R.m =I). 
This means that all the observations fall in one column. Unlike ties, this should 
happen very rarely in the usual sort of application we envisage. There seems 
to be no reasonable way of estimating Xb in this case, and in fact Lb is not 
defined. Thus we suggest that, when N.m = n, the confidence interval be taken 
as the trivial one of all possible values of Xb: O~Xb~ 1, and that any null hy­
pothesis be accepted. To give a confidence interval from 0 to 1 inclusive is, of 
course, just a way of saying that nothing has been learned from the sample 
about Xb. 
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3.3. The Index Xa 

If the roles of columns and rows be interchanged, we have the index Xa and 
its estimator La. Everything is exactly the same as for Xb and Lb, except for a 
systematic interchange of notation. 

3.4. The Index X 

In [8], the symmetrical version of Xa and Xb was 

L: Pam + L: Pmb - P·m - Pm. 
a b 

X = ----------------------
2 - (P.m + Pm.) 

(3.4.1) 

The maximum likelihood estimator of X is 

L:Ram + L:Rmb - R.m - Rm. 
a b 

L = ------------------------
2 - (R.m + Rm.) 

L:Nam + L:Nmb - N.m - Non. 
(3.4.2) 

a b 

We assume that X is determinate, that is, that P'm+Pm.~2, or in other words 
that the entire population does not lie in one cell of the A XB double polytomy. 

We show in Section A6 that (provided X is determinate and ~o or 1) the 
following quantity is asymptotically unit normal: 

where 

U. = R.m + Rm ., 

U~ = L: Ram + L: Rmb, (3.4.4) 

U* = L:r Ram + L:c Rmb + R*m + Rm*, 

with the asterisked notation defined as follows: 

L:* Ram = sum of those Ram's that also appear as Rmb's, i.e., L: L: Rab over 
all (a, b) such that Rab = Ram = Rmb, 

R** = that Rab that appears both in the row for which Ra. is maximum 
and in the column for which R.b is maximum, 

R*m = that Ram in the same row as that for which Ra. is maximum, 
Rm* = that Rmb in the same column as that for which R.b is maximum. 

This notation is easier to use than to write down formally. An example of its 
use follows for the first sample of 50 described in Section 3.2. 
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First random sample in Section 3.2. 

L Nmb = 34, N.m = 18, Nm • = 22 

30 + 34 - 18 - 22 
L = = .4000 

100 - 18 - 22 

U. = (18 + 22)/50 = .8000 

L~ Ram = 14/50 = .2800 

R.m = 14/50 = .2800 

Ur. = (30 + 34)/50 = 1.2800 

L- Rmb = (14 + 4)/50 = .3600 

Rm. = 14/50 = .2800 

U. = (14 + 18 + 14 + 14)/50 = 1.200 

L· Ram = (8 + 8 + 14)/50 = .600 R •• = 14/50 = .2800 

y'50(2 - .80)2 
g(N ab'S)-l - ----:=:;::=====::==;=~=:===:;:=;=:~:::==:::::;;;;:==:==:====;;~======== 

• /(2 - .80)(2 - 1.28)(.80 + 1.28 + 4 - 2.4) 

11 - 2(2 - .80)2(1 - .60) - 2(2 - 1.28)2(1 - .28) 

~8.9964 

95% approximate confidence intervalfor X: .1821~X~ .6179. Population value 
of X=.3600. 

As before, ties may occur that make the various quantities entering into the 
right fractional factor of (3.4.3) ambiguous, although such ambiguities will 
disappear asymptotically under our assumptions of unique maxima. 

Again, as with L b, when x=o or 1, our asymptotic expressions degenerate. 
If X=O, the square root factor of (3.4.3) becomes 0; to our level of approxima­
tion, if X =0, Lis o. If X = 1, the population is wholly concentrated in cells no 
two of which lie in the same row or column; hence the sample will be similarly 
concentrated, and L will always be 1 without any asymptotic approximation, 
providing that it is well defined. Thus, as before, if L¢O or 1, and if a con­
fidence interval, computed in the described manner, includes 0 or 1 or points 
beyond 0 or 1, such values should be removed from it. If L=O or 1, the con­
fidence interval is just the single number 0 or 1 respectively. 

If all the observations lie in a single cell, then L is indeterminate. This 
should be very infrequent for applications of the kind we have in mind. We 
suggest that, when this- occurs, the confidence interval should be the entire 
interval [0, 1], and that any null hypothesis be accepted. 

3.S. The Index 'Y 

In [8], an index of association called 'Y was suggested as appropriate in some 
situations where both classifications have intrinsic and relevant order. The 
definition of 'Y was 

II, - ILl 2II. + III - 1 
'Y= 

1 - II, 1 - II, 
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where 

II. = 2 L L pab { L L Pa' b' } 
a b a'>b b'>b 

lId = 2 L L pab { L L pa' b' } 
a b a'>a b'<b 

(3.5.2) 

lIt = 1 - II. - lId = L L Pab{Pa. + P·b - Pab} 
a b 

= L p!. + L /b - L L P!b. 
a b a 

Here II. ("8" for "same") is the probability that two randomly chosen in­
dividuals will have the same order in both classifications (concordance), lId 
("d" for "different") is the probability that they will have different orders (dis­
cordance) and lIt ("t" for "tie") is the probability that one or both classifica­
tions will be the same so that order is not clearly defined. We propose the 
estimation of 'Y by its maximum likelihood estimator, 

G = p. - Pd 2P. - 1 + P t 

1 - P t 1 - P, 
(3.5.3) 

where the P's are the sample analogs of the II's, as follows: 

p. = 2 L L Rab{ L L Ra'b'} 
a b a'>a b'>b 

2 
= - L L Nab{ L L Na'b'}' 

n 2 a b a'>a b'>b 
Pd = 2 L L Rab{ L L Ra'b'} 

"b a'>a b'<b 

P t = 1 - P, - Pd = L LRab{Ra. + R.b - Rab } 
(3.5.4) 

a b 

1 
= - L L Nab{Na. + N.b - Nab} 

n 2 a b 

= L R!. + L R~b - L L R:b 
a b a b 

As before, we suppose multinomial sampling over the entire tableau, and we 
assume lIt ~ 1. 

It is shown in Section A7 that vn(G-'Y) is asymptotically normal with 
zero mean and variance8 

• This variance for the 2 X2 case, in which 'Y is the same as Yule's Q, was obtained by Yule in 1900 [27, p. 285J. 
For a recent discussion of the 2 X2 case, see [22J and (7J. 
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16 2 2 
--- {IT.ILl" - 2IT.IT"IT." + IT"IT .. } , 
(1 - IT,)' 

(3.5.5) 

where 

IT .. = L L PtJb{ L L PtJ'b' + L L PtJ'b,}2 
tJ b tJ'>tJ b'>b tJ'<tJ b'<b 

IT." = L L PtJb{ L L PtJ'b' + L L PtJ'b'} 
tJ b tJ'>tJ b'>b tJ'<1I b'<b 

.{ L L PII'b' + L L PII'b'}' 
(3.5.6) 

II'>,. b'<b 11'<11 b'>b 

These doubly subscripted IT's are readily interpreted as follows. Suppose we 
draw three individuals at random and independently from the population in 
question. Then 

IT .. is the probability that the second and third individuals both have "posi­
tive" sign relationships (i.e., are both concordant) with the first. 

ITdd is the probability that the second and third individuals both have 
"negative" sign relationships (i.e., are both discordant) with the first. 

IT." is the probability that the second individual has "positive" sign rela­
tionships with the first (i.e., the first and second are concordant) but 
that the third has "negative" sign relationships with the first (i.e., the 
first and third are discordant}.9 

Hence, if we define p •• , P'''' and p"" just as the corresponding IT's but with 
Rub replacing Pub, and if we assume that (3.5.5) is FO, it follows that 

yn(G - 'Y) / • / 16 {p!Pdd - 2P.P"P." + P:P .. } 11 (1 - P,)' 
(3.5.7) 

is asymptotically unit-normal. (Note that we do not require any uniqueness of 
maxima assumptions here. On the other hand, the assumption that (3.5.5) FO 
does not seem to have any very simple interpretation. Comments on the mean­
ing of this assumption are given in Section A7.) 

If G= I, then the denominator of (3.5.7) (i.e., the estimator of Y(3.5.5» will 
be equal to zero. For this particular situation, a possible statistical procedure, if 
n is large, is to give as the confidence interval the degenerate interval 'Y = 1. If 
'Y<I, the probability that G=I vanishes as n-HC , while if 'Y=I, G will always 
be 1, providing that it is well defined. On the other hand, if 'Y is near 1, G may 
frequently equal 1 unless n is very large, so that the magnitude of n for our 
asymptotic theory to work depends critically on 'Y when 'Y is near 1. Similar 
comments can also be made when G= -1. In the particular situation where G 
is undefined, which will happen very rarely in the sort of application we 
envisage, the point of view presented at the end of Section 3.2 (for the case 
where Lb is undefined) can be applied . 

• Note that n", baa been defined unaymmetrically with respect to the l!econd and third iudividualej this is 
the re&8On for the 2 in the middle term of the laat factor of (3.6.6). 
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If in computing p .. , etc., we use Nab instead of Rab, we emerge with n' p .. , 
etc. Hence, denoting by p •• , p., etc., the quantities corresponding to p .. , P" 
etc., but computed in terms of Nab's, we find that 

p .. = P .. ln3 P, = P.ln2, etc.; 

that 

and that (3.5.7) is the same as 

(3.5.8) 

This is perhaps the most convenient form for computation. As an example, 
let us treat the first random sample used in Section 3.2, but now with each 
population polytomy thought of as ordered. A convenient way to organize the 
computations is the following. 

First set down the Nab table. Then compute what we might call the S (for 
"same") table. This aX{3 table contains in its (a, b) cell the sum of all Na1b l 

such that a'>a and b'>b, plus the sum of all Na'b' such that a'<a and b'<b. 
Then compute the D (for 'different') table. This aX{3 table contains in its (a, 
b) cell the sum of all Na'b' such that a'>a and b' <b plus the sum of all Na'b' 
such that a'<a and b'>b. Note that, if we were only computing G itself, we 
could use simpler Sand D tables, entailing but one pair of inequalities. 

Thus we have for our example 

Nab Table STable D Table 

8 5 3 3 31 19 4 0 o 0 12 27 

o 8 1 0 22 26 17 16 11 6 7 18 

o 4 14 4 o 8 21 25 20 7 3 0 

where, e.g., the 31 in the upper left corner of the S table is found by adding 
8+1+0+4+14+4=31, and the 7 in the second row and third column of the 
D table is found by adding 0+4+3=7. 

p. is found by mUltiplying each entry of the Nab table by the corresponding 
entry of the S table and adding the products. 

Pd is found by multiplying each entry of the Nab table by the corresponding 
entry of the D table and adding the products. 

p •• is found by multiplying each entry of the Nab table by the square of the 
corresponding entry of the S table and adding the products. 

Pdd is found by multiplying each entry of the Nab table by the square of the 
corresponding entry of the D table and adding the products. 

p.d is found by taking the sum of the triple products of corresponding terms 
from the Nab, S, and D tables. 

With the possible exception of P,d, all these numbers may be found very 
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rapidly with the aid of a table of squares and a desk computer. For our example 
we have 

P, = 1,006, 

p .. = 24,168, P.d = 2,617, Pdd = 3,278. 

A simple numerical check starts by computation of a T (for 'tie') table. Here 
in the (a, b) cell one puts Na.+N.b-Nab. In our example we have 

T Table 

19 31 34 23 

17 18 26 16 

30 35 26 25 

(The T table itself may be checked by observing that the sum of its entries 
must be n(a+.B -1). In the above case the sum should be 300, as it is.) To use 
this check compute the following quantities: 

p,=sum of products of Nab's by corresponding entries in T table, 
P.,=sum of triple products of Nab'S by corresponding entries in Sand T 

tables, 
Pdt=sum of triple products of Nab's by corresponding entries in D and T 

tables, 
Ptt=sum of products of Nab's by squares of corresponding entries in T table. 

In our case we have 

Pt = 1,252, Pst = 23,515, Pdt = 6,205, P tt = 32,880. 

The following relationships then hold and serve as a partial check: 

Ps + Pd + Pt = n2, 

p .. + 2Psd + Pdd + 2Pst + 2Pdt + Pit = n 3• 

Some other relations that may be used for more detailed checking are 

nPs = p.s + Psd + Pst, 

nPd = Psd + Pdd + Pdt, 

nPt = p. t + Pdt + Pit. 

These all hold for the computations of our example. 
In systematizing the above computations it may be convenient to write 

separately the cross-product tables of the Sand D tables, the Sand T tables, 
and the D and T tables. In our example, these are 

SXD SXT DXT 

o o 48 o 589 589 136 o o o 408 621 

242 156 119 288 374 468 442 256 187 108 182 288 

o 56 63 o o 280 546 625 600 245 78 o 
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From the above numbers we compute that 

1,006 - 242 
G = = .6122 

1,006 + 242 

(to four places), and that, via (3.5.8), 

1,557,504 
(.6122 - 'Y) I = (.6122 - 'Y)6.6209 

4\13,458,600,992 

327 

may be considered as an observation from an approximately unit-normal 
population. Hence we may readily establish approximate confidence limits for 
'Y, say on the 95% level of confidence. These limits, for our sample, say that 'Y 
lies between the numbers 

1.96 
.6122 ± 6.621 ' 

or that 'Y (to 3 places) lies between .316 and .908. In particular, this means that 
G differs from zero with statistical significance on the 5% level of significance. 
(The true value of 'Y for the cross classification from which the sample was 
drawn is .4889 to four places.) 

The computations described and exemplified in the preceding pages are 
rather tedious because of the many arithmetical operations. For a rapid signif­
icance test or a crude confidence interval, the computations may be much 
curtailed (at the expense of power). 

This curtailment is possible because of the existence of a simple upper bound 
for the asymptotic variance of \In (G-'Y). We show in Section A7 that the 
asymptotic variance of \In (G-'Y), whose exact value is given by (3.5.5), is 
always less than or equal to 

2(1 - 'Y2)/(1 - ITt). (3.5.9) 

This upper bound is closely related to a bound obtained by Daniels and Kendall 
for a somewhat different problem (see [3], [4]), and to a bound presented by A. 
Stuart [23] for a measure of association that is similar to our 'Y [8, pp. 750-1]. 
The method of obtaining (3.5.9), which is developed in Section A7, is somewhat 
different from, and perhaps simpler than, the methods used by earlier writers. 

As an example of this upper bound, consider the 3 X 4 population of Section 
3.2, from which was drawn the sample we have just discussed. For that popula­
tion, (3.5.5) turns out to be 1.259 and (3.5.9) to be 2.920, so that the upper 
bound for asymptotic variance is about 2.3 times the actual asymptotic 
variance. For most uses, however, the relevant ratio is the square root of 2.3, 
about 1.5. 

It follows from (3.5.9) that conservative asymptotic tests and confidence in­
tervals may be obtained by considering as a unit-normal quantity 

_ .1 1 - P, 
\In(G - 'Y) 'V 2(1 _ G2) , (3.5.10) 
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or, in another notation, 

• / n 2 - Pt 

(G - ')') 'V 2n(1 _ G2) . (3.5.11) 

By a conservative test we mean a test whose probability of falsely rejecting 
the null hypothesis is known only to be ~ the nominal level of significance. 
By a conservative confidence interval we mean a confidence interval whose 
probability of covering the true value being estimated is known only to be ~ 
the nominal confidence level. This traditional notion of conservatism is, of 
course, asymmetrical. If we are conservative about significance level, we may 
lose power. 

As an example, let us return to the numerical work a few paragraphs back 
that led to the 95% confidence interval (.316, .908) from a particular sample. 
For that sample, using the present cruder approximation, 

¥ 2,500 - 1,252 
(.6122 - ')') = (.6122 - ')') X 4.468 

100(1 - .61222) 

may be considered as an observation from (approximately) a normal distribu­
tion with zero mean and variance less than or equal to unity. This results in 
the following conservative asymptotic confidence interval at the 95% level 
of confidence: (.174, 1.051). We would of course change the right-hand end point 
to obtain (.174, 1.000). (Note that, by a familiar argument, 1.000 itself is ex­
cluded from the interval.) 

Because of the simple form of (3.5.9), one may consider a variant procedure, 
much like that of the familiar quadratic confidence procedure for binomial 
proportions. The probability is (asymptotically) ~ I-a that 

(3.5.12) 

where the quantity in the middle is like (3.5.10) except that G2 in (3.5.10) is 
replaced by ')'2 here. The statement (3.5.12) is equivalent to 

[ n2 - Pt ] 2 (G - ')')2 ~ Kat2 • 
2n(1 - ')'2) 

(3.5.13) 

Simplifying, we obtain the quadratic inequality 

It is readily shown that, for large n, the probability is nearly one that the 
values of ')' satisfying (3.5.14) form an interval. It is a conservative approximate 
confidence interval for ')'. 

In our numerical example, (3.5.14) becomes 

1,632,),2 - 1,528,), + 83.6 ~ 0, 
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and the two real roots of the above quadratic expression are (.058, .878). 
The numerical results from our particular sample may be recapitulated as 

follows: 

95% asymptotic confidence interval based on estimate of variance via 
«3.5.8): (.316, .908) 

95% conservative asymptotic confidence interval based on estimated 
variance bound via (3.5.11): (.174,1.000) 

95% conservative asymptotic confidence interval based on estimated 
variance bound via (3.5.14): (.058, .878) 

As would be expected, the confidence interval obtained via (3.5.8) is ap­
preciably narrower than the other two. This reflects the fact that the upper 
bound for asymptotic variance (3.5.9) may be considerably larger than the 
true asymptotic variance. The two conservative methods give intervals of 
about the same length but in different positions. If we compare the uncurtailed 
interval based on (3.5.11), that is (.174, 1.051), with the interval based on 
(3.5.14), we see that the former is longer than the latter. This might have been 
expected since G in the denominator of (3.5.11) is subject to sampling vari­
ability, while in (3.5.14) the true value 'Y appears instead of G. 

On the whole, we recommend the use of (3.5.8) because of its more precise 
results. It is true that it requires a tedious (although not difficult) computa­
tion, but in most serious studies this amount of computation would be a neg­
ligible cost unless it had to be repeated many times. It may well be that better 
bounds than (3.5.9) will be found that permit simplified computations without 
appreciable loss of precision. Daniels [4] has shown that the upper bound first 
given by Daniels and Kendall [3], which is related to (3.5.9) though appro­
priate for a somewhat different problem, is in general a poor one, although it is 
sometimes attainable. (See also [14].) Nevertheless, when n is large, even this 
bound can be good enough for some practical purposes [23], which suggests 
that the bound (3.5.9) presented here can also be good enough for such prac­
tical purposes. 

We mentioned earlier in this section that the upper bound (3.5.9) for the 
variance of G was closely related to a bound presented by Stuart [23] for an 
estimate of a measure of association that he has suggested. It was also noted 
in [8, pp. 750-1] that Stuart's measure of association was closely related to 'Y. 
(The denominator 1- ITt in (3.5.1) does not appear in Stuart's measure, and in 
its place we find a quantity that depends on the minimum number m of rows 
and columns in the cross classification table [8 ].)10 It therefore seemed worth­
while to include here some numerical comparison of the two measures and the 

10 Stuart's denominator is introduced in order that his measure of association, Te, may attain, or nearly attain, 
the absolute value 1 when the entire cross classification population lies in a longest diagonal. The absolute value 1 
is attained, following Stuart, just when the following three conditions are met: (1) population size is a multiple of 
m, (2) the population lies entirely in cells along a longest diagonal of the cross classification table, and (3) the fre­
quencies in these diagonal cells are equal. This characteristic of TO is rather different from the corresponding charac­
teristic of 'Y, which has absolute value 1 when (but nnt only when) the population is concentrated on any diagonal of 
the cross classification; in particular, the cells of the diagonal need not have equal or nearly equal frequencies. This 
difference between TC and 'Y may be relevant in deciding which measures to use in applications. 

Stuart defines To for a finite population and considers sampling without replacement, while we consider Mm­
piing with replacement. Sampling theory for either TC or 'Y could, of course, be considered for sampling both with 
and without replacement. 
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bounds for their corresponding variances. For this purpose, the data presented 
by Stuart [23, pp. 8-10] has been re-xamined. Stuart's data (Table 1 in [23]) 
refers to 4X4 cross classifications between left and right eye vision for a group 
of employees in Royal Ordnance factories; he gives two cross classifications, 
one for men and one for women. The following table summarizes information 
about te, G, and estimated bounds on standard error for Stuart's data: 

Estimated 

G 
Bound on Standard Error 

t, 

for t, for G 

Men +0.629 +0.776 0.029 0.022 
Women +0.633 +0.798 0.019 0.014 

For differences 
Difference 0.004 0.022 0.035 I 0.027 

We note that the estimates G are larger than the corresponding estimates t. 
and the estimated bounds on standard errors are smaller. These differences no 
doubt reflect in part the fact that te and G estimate somewhat different popula­
tion measures of association. 

In closing this section, we mention that, in testing the null hypothesis 'Y = 0, 
some modification and simplification of the asymptotic variance formula 
(3.5.8) is possible, since II. = lId when the null hypothesis is, in fact, true. In this 
situation, the denominator of (3.5.8) might be replaced by the following, which 
is asymptotically equivalent to that denominator under the null hypothesis: 

(3.5.15) 

The statistic (3.5.15) is simpler to compute than the denominator of (3.5.8), 
and its use as a replacement for the denominator of (3.5.8) will not greatly af­
fect, when n is large, the level of significance of the correspondingly modified 
test, although it will affect, to an unknown extent, the power of this test. 
Further study of the use of (3.5.15), when the null hypothesis is 'Y =0, would be 
worthwhile. (A related discussion in the binomial context is given in [20].) 

If we wished to test the stricter null hypothesis of independence between 
the two polytomies (independence implies that 'Y=O, but 'Y=O does not imply 
independence), further modification and simplification is possible, in the sense 
that (3.5.15) could be replaced by a statistic which would be a function of only 
the marginal N's and which would be asymptotically equivalent to (3.5.15) 
under the null hypothesis. 

3.B. Measures of Reliability 

In [8], a number of measures of reliability or agreement were suggested as 
possibly useful when A1 is the same class as BI , A2 as B2, and so on, but where 
assignment to class is by two different methods. In these situations a = fl. 

For some of the proposed measures of reliability, namely 
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" L Paa and L Pab, 
a=1 la-blSl 

where I is a small integer, there is relatively little difficulty in working with the 
sampling distributions of the sample analogs 

" E Raa and E R ab. (3.6.1) 
la-bl ~J 

Each of these will, under over-all multinomial sampling, have a binomial dis­
tribution with binomial probability equal to the population value of the meas­
ure and sample size equal to n. Thus familiar procedures for estimating and 
testing binomial probabilities may be used. 

A slightly more complex measure, of possible interest in the unordered case, 
was also suggested in [8]. It is 

E Paa - !(PM. + p.M) 
Ar = (3.6.2) 

1 - !(PM. + p.M) 

where 

PM. + p.M = Max (Pa. + P.a). 
a 

The sample analogue of Ar is 

E Raa - !(RM. + R.M) 
Lr = 

1 - !(RM. + R.M) 
(3.6.3) 

where 

R M. + R.M = Max (Ra. + R.a). 
a 

Assume now (i) that Ar is well-defined, (ii) that there is a unique modal class 
(i.e., that Pa.+P.a=PM.+P.M for only one a), and (iii) that Ar~ ± 1. Then the 
methods of the preceding sections and the Appendix may be applied to show 
that 

[ 1 - D J- 1/2 
(L. - Ar)(1 - !S.)2 ~ {Dr + tS.(1 - Dr - Sr) - RMM(! + !Dr - Sr)} 

[
1- D 

= {Lr - Ar)(1 - !Sr)2 -n-r 1(1 - !Sr) (tSr + Dr - 2RlIfM) 

J-1/2 

- HI - Dr)(Sr - 2RMM)} 

is asymptotically unit-normal. The new notation is defined as follows: 

Dr = ERaa, 

RMM = that Raa such that Ra. + R.a = R M. + R.M. 
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For large n, RMM is uniquely defined with high probability. If a tie occurs we 
suggest a random choice. 

3.7. Partial and Multiple A88ociation 

As final examples of asymptotic sampling theory in the case of fully multi­
nomial sampling, we consider one of the coefficients of partial association 
suggested in Section 11 of [8 J for a three-way classification, together with the 
coefficient of multiple association suggested in Section 12 of [8 J. 

Suppose that there are three polytomies: Al , .•• , A .. ; Bl , ••• , B~; and 
Cl , ••• , C.,. If an individual is chosen at random from the fixed triply poly­
tomous population of interest, the probability that he will simultaneously fall 
in the categories A eI, B b, and C. is Pab •. A measure of partial association between 
the A and B polytomies, averaged over the C polytomy, is 

L LPa .... - LP.",. 

xt(A,BI C) = a • 

1 - L p·",c 
(3.7.1) 

where dots mean summation over the dotted subscript, where Pa .... =Max Pab., 
and where p ..... =Max P.bc. This measure is the relative decrease in probability 
of error of guessing the B category of an individual if we know both his A 
and C categories as against knowing only his C category. Thus it refers to 
optimal prediction with the C category always known (hence "partial" asso­
ciation). It is asymmetric in that only prediction of B categories are considered, 
and it is unchanged by independent permutations of the classes within each 
polytomy (hence appropriate in some situations where there is no natural 
ordering of these classes). 

For convenience we may simply write x~ instead of x~ (A, B I C) in this 
Section, but in applications the arguments should probably be retained, for the 
six possible asymetrical X"s obtained from an aX{:JX'Y cross classification will 
in general all have both different numerical values and different interpretations. 

As before, we assume that all relevant maxima are unique, i.e., that 
For each a and c, Pam. = Pabc for a unique value of b. 
For each c, P.mc=P.b. for a unique value of b. 

We also assume that X~ is well defined, i.e., that L. P.mc¢l. 
Suppose that a sample of n is drawn from our population of interest and that 

each member of the sample is assigned to one of the a{h cells (Aa, Bb, C.) ac­
cording to observation (without error) of its categories in the three polytomies. 
Suppose further that sampling is with replacement, or, alternatively, that the 
population of interest is infinite or very large. Let Nab. be the number of in­
dividuals among the n in the sample that fall into the (Aa, Bb, C.) cell. Then 
La Lb Lc Nab.=n and the Nab.'s have jointly a multinomial distribution with 
cell probabilities Pab •• Denote by Rabe the quantity Nab.ln. 

Just as in Section 2, the a{:J'Y random variables vn (Rabc-Pabc) are jointly 
asymptotically normal, and we may assume, for asymptotic purposes, that 
R a",. and R ..... are taken on at the values of b corresponding to Pam. and p.". •• 
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In this context, we now discuss the approximate distribution of the maxi­
mum likelihood estimator of ~~, 

L: L: Ram. - L: R ·m. 
Lt " . (3.7.2) 

Of course, even if ~~ is defined, L~ may not be, but, as in Sections 3.1 and 3.2 
we may neglect this possibility for asymptotic purposes. As in prior sections, 
one may show that v'n (L~ - ~~) is asymptotically normal with zero mean and 
variance 

(1 - L: L: Pam.)( L: L: Pam. + L: p.m. - 2 L: L:r Pam.)/(l - E P·m.)3, (3.7.3) . " . " 
where 

Er Pam. 

" 

. " • 

denotes the sum of the Pamc'S (for fixed c) over these values of a such that P"m. 
is taken on for that value of b for which P'm. is taken on. Note the strong simi­
larity between (3.1.3) and (3.7.3); the latter is just like the former except that 
all terms (but unity) have an additional summation over c. We note that 
(3.7.3) is zero if and only if ~~ is zero or one. 

Hence, the following quantity is asymptotically unit-normal: 

(3.7.4) 

c a . " • a 

provided that our earlier assumptions hold and that ~~~O or 1. If ~~=O, then, 
to the present level of asymptotic approximation, L~=O. If ~~= 1, then L~= 1 
without any asymptotic approximation, providing L~ is defined. 

We note that the following quantities, are also asymptotically unit-normal: 

v'n[log(l- U) -log(l- xt)]V(1- L:R.m.)(l- L: L:Ramc)/D, (3.7.5) 
c " 

v'n[v'l - Lt - v'1 - ~t]2(1 - E R'mc)/v'D, 

v'n[v'Lt - v'~t J[Lt/(l - Lt)]1122(1 - ER.mc)/v'D, 

where 

D = E E Ramc + E R ·me - 2 E Er Ram., . " • a 

and logarithms are to base e. 
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We conclude this Section with some comments about the following measure 
of multiple association between B and (A, C) together [S, Sec. 12]: 

~ ~ Pam. - P·m· 
a 

}..t'(B; A, C) = -------
1 - p.m. 

where P'm' = Max P.b .. This quantity is exactly }..b itself, computed from the 
(a'Y) X{3 cross classification in which the a'Y cells of the A, C cross classification 
are thought of as making a single classification. (Note: On p. 762 of [S], the 
rearranged tableau is shown for A against (B, C) rather than for B against 
(A, C).) The interpretation of }..~' (B; A, C) is the usual one for }..b, but now com­
paring errors in predicting B, knowing A and C against knowing nothing. 

It is interesting to note on analogy (brought to our attention by J. Mincer) 
with classical correlation analysis. In the present context, the marginal }..b, 

relative to prediction of B from C, is 

SO we see that 

~P.mc - p.m. 

}..b(B; C) = -----
1 - p.m. 

1 - }..t' (B; A, C) = [1 - }..b(B; C)][1 - }..t (B, A I C)]. 

This is completely analogous to the classical relationship between mUltiple and 
partial correlation coefficients, 

1 - R!.ac = [1 - p:c][l - P!a.c]; 

see, for example, [2], p. 307. It is interesting to note that, although Rb•ac may 
be expressed as a function of Pba, Pbc, and Pac, the analogous relationship does 
not hold for}..~ (B, A I C),u 

Finally, we note that the asymptotic distribution of the sample analog of 
}..~' needs no fresh discussion here. For }..~' is really }..b for the cross classification 
between (say) B and (A, C); hence the material of Section 3.1 applies directly. 

3.8. Sampling Experiments 

This section presents the results of some sampling experiments that bear on 
the adequ~cy of the asymptotic approximations given in the prior sections. 

Table 3.S.1 describes the sampling experiments that have been done; in each 
case, reference is made to the figure that summarizes the results of the experi­
ment graphically. These figures are drawn on normal probability paper, the 
straight lines represent the standard normal distribution, and each dot has its 
abscissa equal to the value of a computed statistic and its ordinate equal to the 
proportion of computed statistics less than or equal to the abscissa. Thus the 
dots give the "corners" of the observed sample cumulative distribution func­
tions. Deviations of the dots from the straight line arise from two sources: 
(1) inadequacy of the asymptotic approximation, and (2) sampling fluctuations. 

11 The simple relationships between the p's are inherent in the geometry of classical correlation theory, and are 
not tied to the UBumption of normality. The last sentence of Section 12 in [8) is corrected by this remark. 
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TABLE 3.8.1. SAMPLING EXPERIMENTS 

Sample Statistic Com-
Sample 

Number 
Measure of puted from of Population Figure 
Association Each Sample Size Samples 

Lb (3.1.4) 200 50 3 X 4 cross classifica- 3.8.1 
tion of Sec. 3.2 

Lb (3.1.4) 100 50 3 X 4 cross classifica- 3.8.2 
tion of Sec. 3.2 

Lb (3.1.4) 100 100 (iv) 3 X 4 cross classifica- 3.8.3 
tion of Sec. 3.2 

La (i) (3.3.4) 200 50 3 X 4 cross classifica- 3.8.4 
tion of Sec. 3.2 

La (3.3.4) 100 50 3 X 4 cross classifica- 3.8.5 
tion of Sec. 3.2 

La (3.3.4) 100 100 (iv) 3 X 4 cross classifica- 3.8.6 
tion of Sec. 3.2 

Lb (3.1.4) 200 50 2 X 3 cross classifica- 3.8.7 
tion (ii) 

La (i) (3.3.4) 200 50 2 X 3 cross classifica- 3.8.8 
tion (ii) 

yn (G-'Y) 
G (iii) 50 100 3 X 4 cross classifica- 3.8.9 

y(3.5.5) tion of Sec. 3.2 

yn (G-'Y) 
G 200 50 3 X 4 cross classifica- 3.8.10 

y(3.5.5) tion of Sec. 3.2 

yn (G-'Y) 
G 200 50 2 X3 crOSB classifica- 3.8.11 

y(3.5.5) tion (ii) 

Notes to the table 
(i) La for the 3 X4 cross classification is, of course, Lb for the trall8Posed (4 X3) cross classification. In fact, the 

same samples Were used. 
(ii) The 2 X3 cross classification used here was 

b 
1 2 3 

.04 .23 .18 .45 
a 

2 .18 .05 .32 .55 

.22 .28 .50 1.00 

For thi8 population, N, =.10, Xa =..10, and X"'.03. 
(iii) This statistic is the deviation of G from its population value, 'Y, divided by the population asymptotic std. 

dev. of G. Thus the re8ults here are not directly applicable, in general, since (3.5.5) would hardly eVer be 
known in practice. The corresponding practical statistic, (3.5.7), requires considerably more computation; 
sampling results for it are presented in Table 3.8.2. 

(iv) The 100 samples include the 50 samples of the line just above. 

101 



336 AMERICAN STATISTICAL ASSOCIATION JOURNAL, JUNE 1963 

TABLE 3.8.2. THE EMPIRICAL AVERAGE NUMBER OF TIMES PER ONE 
HUNDRED SAMPLES THAT vn (G--y) DIVIDED BY THE SQUARE ROOT 
OF (3.5.5) EXCEEDED THE VALUES FROM THE UNIT-NORMAL DISTRIBU­
TION AT THE TWO-SIDED .05, .10, AND .25 LEVELS, WHEN THE SAMPLE 

SIZE n=50 

-.01 .20 .30 .40 .50 .60 .70 .SO .90 .99 
Values of 'Y to to to to to to to to to to 

+.01 .29 .39 .49 .59 .69 .79 .89 .92 1.00 
------------------

Number of samples 300 800 1900 700 1000 2000 1400 700 300 900 
------------------

Significance levele 
.211 22 29 26 25 30 30 31 30 26 11 
.10 10 13 11 9 12 12 12 9 8 6 
.011 6 7 II 4 5 5 5 4 3 II 

THE EMPIRICAL AVERAGE NUMBER OF TIMES PER ONE HUNDRED 
SAMPLES THE STATISTIC (3.5.7) EXCEEDED THE VALUES FROM THE 
UNIT-NORMAL DISTRIBUTION AT THE TWO-SIDED .05, .10, AND .25 

LEVELS, WHEN THE SAMPLE SIZE n=50 

-.01 .20 .30 .40 .50 .60 .70 .SO .90 .99 
Values of 'Y to to to to to to to to to to 

+.01 .29 .39 .49 .59 .69 .79 .89 .92 1.00 
------------------

Number of samples 300 800 1900 700 1000 2000 1400 700 300 900 
------------------

Significance levela 
.25 23 30 29 25 34 33 37 36 32 67 
.10 12 17 15 13 18 21 23 24 21 65 
.05 6 10 10 7 12 16 18 19 17 65 

Note that for the cross classifications considered, with 6 or 12 cells, sample 
sizes of 50 and 100 would not ordinarily be considered large. The sample is 
spread over all cells, while, at least for Lb and La, only some cells determine 
the sample measure of association. 

In the light of these considerations, we find the sampling results encouraging. 
For La and 4, the dots on the figures lie generally near the standard normal 
straight line. The tail probabilities are particularly important for most statis­
tical applications, and we note that some of the deviations in the tails appear 
large. In examining the figures, however, keep in mind that the scale near the 
tails is magnified because of the use of normal probability paper. 

We next summarize in Table 3.8.2 some sampling results about G that were 
obtained by Miss Irene Rosenthal (Institute of Child Welfare, University of 
California, Berkeley) and that we reproduce here with her kind permission.12 

Miss Rosenthal's work related to two statistics vn (G-'Y)/v(3.5.5) and 
(3.5.7). She considered a large number of 5X5 cross classifications, categorized 
by their values of 'Y. In Table 3.8.2, the populations are not separated, but re­
sults are grouped by ranges of 'Y values. Table 3.8.2 compares the two-sided tail 
probabilities from asymptotic unit normality with the observed relative fre-

U MiBa Rosenthal has in preparation a manuecript giving more detailed information about ber sampling 
ezperimentB. 
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FlO. 3.8.1. Results of Sampling Experiment for (3.1.4). 50 Samples, Each of 200 Cross 
Classified Observations . 
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Fig. 3.8.2. Results of Sampling Experiment for (3.1.4). 50 Samples, Each of 100 Cross 
Classified Observations . 
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FIG. 3.8.3. Results of Sampling Experiment for (3.1.4). 100 Samples, Each of 100 Cross 
Classified Observations . 
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FIG. 3.8.4. Results of Sampling Experiment for (3.3.4). 50 Samples, Each of 200 Cross 
Classified Observations . 
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FIG. 3.8.5. Results of Sampling Experiment for (3.3.4). 50 Samples, Each of 100 Cross 
Classified Observations . 
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FIG. 3.8.6. Results of Sampling Experiment for (3.3.4). 100 Samples, Each of 100 Cross 
Classified Observations . 
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FIG. 3.8.7. Results of Sampling Experiment for (3.1.4). 50 Samples, Each of 200 Cross 
Classified Observations . 
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FIG. 3.8.8. Results of Sampling Experiment for (3.3.4). 50 Samples, Each of 200 Cross 
Classified Observations . 
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FIG. 3.8.9. Results of Sampling Experiment for ... /n(G--y)/ v(3.5.5) . 100 Samples, 
Each of 50 Cross Classified Observations . 
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FIG. 3.8.10. Results of Sampling Experiment for v'n(G -")')/ v'(3.5.5). 50 Samples, 
Each of 200 Cross Classified Observations . 
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FIG. 3.8.11. Results of Sampling Experiment for .,/ii.(G-'Y)/ V(3.5.5). 50 Samples, 
Each of 200 Cross Classified Observations . 
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quencies from her sampling. The sample size, n, was 50 throughout, and 100 
random samples were drawn from each of the 5X5 populations. Thus, for 
example, we see from Table 3.8.2 that there were eight 5X5 populations with "I 
values in the range [.20, .29]. 

The evidence of Table 3.8.2 suggests that the distribution of v'n (G-'Y)/ 
v'(3.5.5) is reasonably well approximated by the unit normal distribution, 
for populations of the kind considered by Miss Rosenthal. 

The distribution of (3.5.7), on the other hand, seems to be reasonably well 
approximated by the unit normal distribution, for populations of Miss Rosen­
thal's kind, only for values of I "II less than .5, and, even for such values of "I, 
there is a persistent tendency to have more frequent observations in the tails 
than the unit normal approximation predicts. This behavior is consistent with 
the presence in (3.5.7) of a random denominator. Of course, 50 can hardly be 
considered a large sample size, especially for 5X5 cross classifications! The dis­
tribution of (3.5.7) is more relevant to practice than that of v'n (G-'Y)/ 
v'(3.5.5), and we plan to discuss (3.5.7) further in a subsequent publication. 

4. MULTINOMIAL SAMPLING WITHIN EACH ROW (COLUMN) 

OF THE DOUBLE POLYTOMY 

4.1. Preliminaries 

Instead of sampling with replacement over all the cells of an A XB double 
polytomy, thus obtaining a sample point governed by a multinomial distribu­
tion, it may be necessary, desirable, or efficient to preassign and fix the sample 
size within each row (or, alternatively, column) and sample independently 
within each row (column) with replacement. Thus one will obtain a sample 
point governed by a product of a (or (3) independent multinomial distribu­
tions.13 For definiteness, suppose that the separate multinomials are within 
each row. 

Since the sample sizes within rows are fixed, the Nab'S are now subject to the 
a additional restrictions Lb Nab=na., in addition to the over-all restriction 
La Lb Nab=n. Within the ath row, the quantities v'na. [(N"b/na')-(Pab/ 

Pa.)] have zero means, variances (Pab/ Pa.) - (Pab/ Pa.)2, and covariances - (Pab/ 
Pa.)(Pab'/ Pa.) for b~b'. As na.~<X), the distribution of the quantities in question 
approaches that multivariate normal distribution with zero means and with 
the same variance-covariance structure. The Nab'S in different rows are in­
dependent, both for finite samples and asymptotically. In considering asymptot­
ic distributions for all rows together, we shall assume that, as n~ <X), the 
ratios na./n approach definite limits unequal to zero or one. 

For this sampling procedure, and without ancillary knowledge, it is im­
possible to estimate the Pab'S themselves, since the distribution of the sample 
point depends only upon the row-wise conditional probabilities Pab/ Pa .. Hence, 
if we want to estimate or make tests on such measures as ~b, ~, "I, etc. ,which 
themselves do not depend on the Pab'S via the conditional probabilities Pab/ Pa" 
we must either assume the Pa.'S known or perform a separate experiment to ob-

11 One can also obtain such a product of distributions by starting with a multinomial distribution over the 
whole a X{J tableau. and then considering the conditional distribution gi~m NI. =nl .••••• N a. ~na.' This device 
and its extensions. are often used for the presentation of tests and the computation of so-called P-values in tests of 
independence with a XfJ croBS classifications. 
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tain estimates for them. If, however, we wish to estimate or make tests on a 
measure such as At [8, Sec. 5.4], which is a function only of the ratios Pab/Pa" 
then we may proceed without the assumption of knowledge of marginals and 
without performing a separate experiment. In the next three sub-sections we 
shall present examples of the above procedures. 

4.2. The Index Ab, With Marginal Row Probabilities Known 

Perhaps the simplest case of the foregoing general discussion is that" in which 
we are concerned with Ab and in which 

i) there is separate multinomial sampling in the rows, 
ii) the row marginals, Pa., are known (we assume that they are positive), 

iii) the maximum column marginal, P'm, is known, and 
iv) sampling rates in the several rows are such that na.=npa'; that is, the 

sample sizes in the rows are proportional to the known row marginals. 

Such a case might arise if the marginal probabilities are known, say, from 
census data, and if· the sampling rates in the rows may be determined at our 
convenience.14 We shall drop assumption (iii) shortly, but the development is 
simpler if we first suppose P.m known. 

A natural estimator for Pab/Pa' is Nab/na. = Nab/(nPa.). Hence Nab/n is a 
natural estimator for Pab. The corresponding estimator for Ab is 

L (Nam/n) - p.m 
Lb = . (4.2.1) 

1- P.m 

Strictly speaking, we should attach an added symbol to "~" in order to em­
phasize the fact that it is a different quantity from ~ of Section 3.1. We shall, 
however, refrain from doing this because of the already bothersome prolixity 
of notation. 

The distribution of this new ~ depends only on the sum of the Nam's. As 
before, we may, for asymptotic purposes, suppose that Nam is taken on in the 
same cell of the ath row in which Pam is taken. Hence, the quantities Vna. 
[(Nam/na.) - (Pam/Pa.)] = Vn [(Nam/n) -Pam]/v'P:. are asymptotically inde­
pendent normal deviates with zero means and variances (Pam/ Pa.) [1- (Pam! 
Pa.)]. (The expression for variance and the independence hold also for finite 
samples.) From this, we see that the quantities Vn[(Nam/n) -Pam] are asymp­
totically independent with zero means and variances (Pam/ Pa. )(Pa. - Pam). 
Hence, Vn { L(Nam/n) - L Pam} is asymptotically normal with zero mean and 
variance La (Pam/ Pa.) (Pa. - Pam). Since 

Vn(Lb - Ab) = vn{ L (Nam/n) - LPam}/(l- P.m), 

we have that vn(~-Ab) is asymptotically normal with zero mean and variance 

1 ~ Pam 
(1 _ )2 LI - (Pa. - Pam). 

p.", a Pa. 
(4.2.2) 

This is zero if and only if Ab = 1. 

u Of COU1'lle ftPo' will not in general be an integer, but for large ft the dilference will be unimportant, and 
uymptotically it makes no difference at all. We should also point out that eetting ..... =ftPa' here is purely for con­
venience; we have not examined the question of whether or not thia choice is good from the point of view of power. 
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Thus, if ).b¢ 1, by the same argument as before, the following quantity is 
asymptotically unit-normal: 

_ 1 - p.m 
v'n(Lb - ).b) (4.2.3a) 

v'E {pa.[Namlna.][l - (Namlna.}]) 

which may also be written as 
1 - p.m 

n3/2(Lb - ).b) ---===:::;=:========<= v'E {Nam(nPa. - Nam}lpa.} 
(4.2.3b) 

As an example of the method of using the normal approximation, suppose 
that a=fJ=2, n=30, nl.=18, n2.=12, and that P.m=0.5. (Note that P.m need 
not be unique in this context.) Suppose further that the sample values turn 
out to be 

Then L6 is 

Nu = 7 
N21 = 0 

N12 = 11 

N22 = 12. 

1 [ (.6) (11) (.4)(12) - ] _ --+ .50 - .533. 
1 - .50 18 12 

The approximate 95% symmetrical confidence statement is that the following 
quantity lies between -1.96 and + 1.96: 

• 1[_(.6_)(_11_) !.- + (.4)(12) !] / (1 _ 50)2 
11 18 18 12 12 . 

that is to say 
.263 ::; ).6 ::; .803. 

.533 - ).b 

.138 

In order to obtain some idea of the adequacy of the normal approximation, 
the actual distribution of (4.2.3) was obtained in the following case: 

a={l=2 n •. =12 n=30 

pu = .42 PI' = .18 Pl'= .6 

P'l= .08 P2,= .32 p,.= .4 

P'l= .50 p.,= .50 

~=.48 

and the results15 are shown in Figure 4.2.1. The dots in Figure 4.2.1 appear at 
the "corners" of the discrete cumulative distribution graph of (4.2.3); for ex­
ample, the probability that (4.2.3)::; 1.3717 (to four places) is .86164 (to five 
places). 

The approximation seems quite satisfactory for most statistical purposes in 

II Because of the IIUlBll numbers. it WB8 feaaible to find the exact distribution rather than resOl'i to random 
sampling. 
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FIG. 4.2.1. Cumulative Distribution of (4.2.3) . 
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this instance, and the sample size is by no means huge. Of course, this is only 
one case, and a rather special one at that. 

It seems worthwhile to discuss briefly the results when assumption (iii) is 
dropped. In this case, P.rn is naturally estimated by the maximum likelihood 
estimator 

and Xb by 

Max (N.b/n) = N.rn/n = R.m, 
b 

(4.2.4) 

(4.2.5) 

which is the same as (3.1.2). However, the probability structure is different 
because of independence from row-to-row. 

Assuming that Xb is well-defined, and that P.rn is unique, we may compute, 
much as in Section 3.1, that vn(Lb-Xb) is now asymptotically normal with 
zero mean and variance 

(1- P.m)2L:Pam[l- (Pam/Pa.)] + (1- L:Pam)2L:Pa(.m)[I- (Pa(.m)/Pa')] 

- 2(1- P.m)(1 - L:Parn){ L:r pam - L:(PamPa(.m)/Pa')}' (4.2.6) 

all divided by (1- P'rn)" where Pa(.rn) denotes that pab in the ath row of the 
column for which p.b is maximum. The asymptotic variance just stated is zero 
(assuming that Xb is well-defined) if and only if Xb = 0 or 1. Consequently, 
V1i(4-Xb) divided by the square root of the sample analogue of the variance 
stated above, under the assumption that Xb is well-defined and ~o or 1, is 
asymptotically unit normal. Approximate tests and confidence intervals may 
thus be found just as before. 

Similar, but more complex, results may be obtained for the case in which 
only (i) and (ii) stated at the beginning of this section hold; that is, for the 
case in which there is separate multinomial sampling in the rows and the row 
marginals are known, but nothing is known of the column marginals and the 
row-wise sampling rates are not proportional to the row marginals. 

4.3. The Index X: 
An index of association, related to Xb, is 

'" * * * L.J pam - P·rn Xb =-----
1 - P~m 

(4.3.1) 

where 

* * * * ",* Pall = Pab/ (aPa.), Pam = Max Pall, and P·m = Max L.J Pab. 
" b a 

The use of this index was motivated in [8] by its independence of the row 
marginals Pa .. 
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If we have separate multinomial sampling in the rows, a natural estimator of 
P:b is Nab/(Olna.), and a natural estimator of X: is16 

(4.3.2) 

where 

* x' * and R.m = Max LJ Rab. 
b 0 

In order to approximate asymptotically the behavior of Lt in this situation, 
we suppose that the no.'s, or row-wise sampling rates, increase together so that 
na./n~Ua. With this hypothesis, we have from Section 4.1 that the quantities 

v1i(R:b - P:b) = v 1i [(Nab/na.) - (Pab/Pa.)J/a 

~ vna.[(Nab/na.) - (Pab/Pa.)]/(aVUa) 

are independent between rows, have zero means, and are asymptotically nor­
mal with variances 

(Pab/ Pa.) [1 - (Pab/ Pa.) ]/(a2ua) = p:b(1 - ap:b)/(aua). 

As before, assume that P:m and P~m are unique; whence, by a straightforward 
manipulation, vn(Lt - X:) is asymptotically normal with zero mean and 
variance 

* * * * 2'" * * (1 - P.m)2~ [Pam(1 - aPam)/(aUa)] + (1 - Pam) LJ [Pa(.m)(1 - aPa(.m»/(aUa)] 

* * {'" * '" * * } - 2(1 - P.m)(1 - Pam) LJr Pam/(aua) - LJ PamPa('m)/Ua , 

all divided by (I-P~m)4. Here P:(.m) is that P:b in the ath row of the column for 
which ~a P:b is maximum; and ~r means a sum over those values of a for 
which p!.. = P:C'm)' The asymptotic variance just stated is zero (assuming that 
X: is well defined) if and only if X: is 0 or 1. 

Consequently, v1i(Lt -X:), divided by the square root of the sample 
analogue of the variance stated above, under the assumption that X: is well 
defined and ~o or 1, is asymptotically unit-normal. Approximate tests and 
confidence intervals may be found as before. If the sampling rate is the same in 
each row, i.e., if ua = l/a, then the asymptotic variance simplifies somewhat. 

4.4. The Index Tb, with Marginal Row Probabilities Known 

In Section 9 of [8], we mentioned a measure of association based, not on 
optimal prediction, but on proportional prediction in a manner there ex­
plained. This measure is 

(4.4.1) 

" The reason for using a plus sign as superscript, instead of an asterisk, is to emphasize that we are h~re dealing 
with separate multinomial IlImpling in the rowa of the cross classification. 
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When conditions (i), (ii), and (iv), stated in Section 4.2, hold, a natural es­
timator for Tb is 

L L R!b/Ta. - L R~b 
a b b 

(4.4.2) tb = ------==-----
1 - " R2 L..J .b 

b 

where Rab=Nab/n, Ta. =na./n, R.b=N.b/n. (The symbol tb should not be con­
fused with Stuart's te, referred to in Section 3.5; these measures of association 
are quite different.) It can be seen that Vn(tb-Tb) is asymptotically normally 
distributed with zero mean and variance 

* 4{ L[ Pa~ (1- LP\) - P.b(1- L P!b)J2pab 
nb Pa. b ab Pa· 

- [L P:~ - L p\J2} , 
ab Pa. b 

(4.4.3) 

all divided by (1- Lb P~b)4. Consequently, assuming that (4.4.1) is well de­
fined and that (4.4.3) is different from zero, V1i(tb-Tb) divided by the square 
root of the sample analogue of the variance (4.4.3) stated above is asymp­
totically unit-normal. 

Similar, but more complex, results may be obtained in the situation where 
there is separate multinomial sampling in the rows and the row marginals 
are known, but the row-wise sampling rates are not necessarily proportional to 
the row marginals; i.e., the case where conditions (i) and (ii) of Section 4.2 
hold true. 

II. FURTHER REMARKS 

The methods exemplified in this paper may be applied to other measures of 
association (or, more generally, to other sample measures), to other sampling 
procedures, to circumstances in which other kinds of outside knowledge exist, 
etc. One of our purposes has been to present these methods in a manner per­
mitting their use by a wide class of research workers. (In some cases, different 
asymptotic methods may also be useful; for example, see Hoeffding [12].) 
In particular, one can obtain asymptotic approximations for the distributions 
of the traditional measures of association [8, Sec. 4] under other assumptions 
than that of independence. See [1], [27], [22], [21], [26], [15], [7]. Such ap­
proximations for the traditional measures have not been widely used. Perhaps 
one reason has been the almost obsessive interest in testing the null hypoth­
esis of independence. Another possible reason is that the variance formulas 
obtained have been unwieldy and "too troublesome" to apply regularly in 
practice. See, for example, the editorial footnote on page 385 of [15]. 

We have not touched upon the question of power for the tests and con­
fidence interval methods here discussed. The study of approximate power 
would be an appropriate next step. 
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APPENDIX 

AI. Introduction. The purpose of this appendix is to state some useful methods 
for deriving asymptotic distributions, to exemplify their use by outlining some 
of the derivations whose end-products are given in the preceding text, and to 
present other auxiliary material that seems inappropriate for inclusion in the 
text. An explicit statement of these methods may also be convenient for 
readers who wish to work out asymptotic distributions for other measures of 
association or for other sampling procedures than the ones discussed in this 
article. 

A2. A Basic Convergence Theorem. 

Theorem. If {Xn} and {Yn} are two sequences of random variables, and if 
X is a random variable and ya constant, such that X" converges in distribution 
tt) the distribution of X and Y" converges in probability to y, then 

X,,+ y" converges in distribution to the distribution of X +y, 
X"Y" converges in distribution to the distribution of Xy, 
X"/Y,, converges in distribution to the distribution of X/y, (provided, in the 

last case, that y~O). 

(Convergence in distribution of X" to X means that limn~oo Pr{X,,:$x} 
= Pr {X :$ x} for every x at which Pr { X:$ x} is continuous. In the work of this 
paper the qualification may be neglected, for the limiting distributions are all 
normal, and hence continuous except for degenerate singular cases. For con­
vergence in probability, see footnote 4.) 

This result is stated, and an outline of its proof given, by Cram~r [2, pp. 
254-5]; it is a special case of earlier results by Mann and Wald (see [19], 
Theorem 5 and discussion on p. 224). The essential point is that if Z" is a 
sequence of vector-valued random variables converging in distribution to the 
distribution of Z, and if f is a continuous vector-valued function (continuity 
may be weakened), then f(Zn) converges in distribution to the distribution of 
feZ). 

This result has been applied in a number of places in the present text i e.g., 
in all places where a consistent estimator of the true asymptotic standard 
deviation of a statistic has been used, instead of the true asymptotic standard 
deviation itself, as the divisor of the difference between the statistic and its 
corresponding population value, without affecting the asymptotic distribution 
obtained. 

A3. The Delta Method Theorem. We state this theorem for the case of two se-
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quences of random variables, but its extension to more than two sequences is 
immediate. The proof of a more special form may be found in [2], pp. 366-7, 
and the proof of a somewhat more general form is in [13], pp. 777-8. 

Theorem (Delta Method). Assume that W .. and V .. are two sequences of ran­
dom variables (n = 1, 2, . . . ) and that w and v are constants such that the 
pairs 

{vn(W .. - w), vn(V .. - v)} 

converge in distribution (bivariate sense) to the bivariate normal distribution 
with zero means, variances 0'_ and 0' •• , and covariance UfO.' 

Let f(s, t) be a function with continuous first partial derivatives at (w, v). 
Then v'1i[f(W .. , V,,) -few, v)] is asymptotically normal, and in fact has the 

same asymptotic distribution as 

vn{a,.,(W .. - w) + a.(V .. - v)}, 

where a,." a. are the partial derivatives of f with respect to its first and second 
arguments respectively, evaluated at (w, v). Thus the asymptotic distribution 
is the normal distribution with zero mean and variance 

2 2 
a,.,u _ + 2alDa.u w. + avu ••. 

Some of the results in this paper (e.g., the asymptotic variance (3.5.5» were 
obtained with the aid of the delta method theorem. Some other results could 
be obtained either by applying this general theorem, or by more direct con­
siderations (e.g., Section A5), since it is sometimes possible to arrange matters 
so that the function f(s, t) is of the form a,.,s+a.t to begin with or so that a 
quantity simply related to f(s, t) is of this linear form. We shall be frequently 
dealing with linear combinations of the vn Rab's, and we observe that the 
covariance structure of the vn Ral/s is independent of n and is the same as the 
asymptotic covariance structure. Hence the variance of a linear combination 
of vn Rob'S is exactly equal to its asymptotic variance. 

A4. Sample MaXima. The fact that we may proceed, for asymptotic purposes, 
under the assumption that the Ram's, R.m's, etc., are taken on at the same 
columns and rows respectively as are the Pam'S, P'm'S, etc., is a consequence of 
the following. 

Lemma. Let p .. (n=l, 2, ... ) be a sequence of probability distributions, 
and let V be a chance event such that lim" ..... p .. (V) exists; call it P(V). Let 
W be a chance event such that lim ....... P,,(W) =1. Then lim ....... p .. (VnW) 
=P(V). (The symbol "n" (read "and") means set-theoretic intersection.) 

Proof: We note that 

P .. (V) = P .. (V n W) + P .. (V nOW), 

where OW is the complement of W. But p .. (vnoW)~p .. (OW), which has 
the limit zero. This lemma is also a special case of the theorem of Section A2, 
obtained by replacing the probability of an event by the probability that its 
characteristic function is unity. 
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To apply this lemma, let p .. be the joint distribution of the random variables 
v;i(Rab - Pab). Let W be the event defined by the requirement that the various 
sample maxima are taken on at the same columns and rows as the correspond­
ing true maxima. V may be any chance event. For example, V might be the 
event that some function of the vn(Rab-Pab)'S is ~ a given constant. The 
hypotheses of the lemma are satisfied. 

We are interested in the limit of P .. (V). By applying the lemma, we see that 
this limit is equal to the limit of P .. (V("\W). This in turn is equal to the limit 
of P .. (V'("\W), where V' is like V except that Ram is replaced by that Rab such 
that Pab=Pam (assuming uniqueness) and so on, since the event V("\W is 
exactly the same as the event V'("\ W. Finally, reapplying the lemma, the limit 
of P .. (V'("\W) is equal to the limit of P .. (V'), which is often easy to compute 
and which then gives us the desired limit of P .. (V). 

The following sections will illustrate applications of this lemma and the 
prior general theorems. 

A5. Asymptotic Behavior of L". To examine the asymptotic behavior of Lb we 
write vn(Lb - 'Xb) as follows: 

- _(ERam - Rom EPam - pom) 
vn(Lb - 'Xb) = vn - ----

I - Rom 1 - pom 

- (E Ram - Rom)(1 - Porn) - (E Pam - Pom)(1 - Rom) 
= vn (A5.I) 

(1 - Rom){1 - Pom) 

- [E (Ram - Pam)](1 - Pom) - (Rom - Pom){1 - E Pam) 1 - Pom 
= vn 0 • 

(1 - Pom)2 . 1 - Rom 

The right-most factor, (I-Pom)/(I-Rom), converges in probability to unity. 
Hence, if we can find the asymptotic distribution of what remains after omitting 
the right-most factor, we know, by Section A2, that it is the same as the 
asymptotic distribution with the right-most factor. 

Since the Pam'S and Pom are constants, our search then is effectively for the 
asymptotic distribution of vn times a linear combination of the Ram's and 
R.m; namely, that linear combination appearing in the numerator of the first 
fraction above. Let us call this numerator A. We already know, by the lemma 
presented in Section A4, that, for asymptotic purposes, Ram may be considered 
equal to Rab for that value of b satisfying Pam=Pab and that similarly R.m may 
be considered equal to R.b for that value of b satisfying P.m=P.b. 

Hence, by Section A3 and the facts just noted, it follows that vnA is 
asymptotically normal with mean zero and variance 

(1 - P.m)2(E Pam) (1 - E Pam) 

+ (1 - E Pam)2P.m(I - Pom) 

- 2(1 - P.m)(1 - E Pam)[ E' Pam - .Pom E Pam]. 

(A5.2) 

For the reader's convenience, we insert here the argument leading to the 
above expression; similar arguments can be presented to obtain derivations 
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of the asymptotic variances, presented in the text, for some of the other 
statistics discussed. 

The first line of (A5.2) is the variance of the first term of v'n.:1; viz., v'n(l 
-P.m) L(Ram-Pam). The constant term, (l-P.m), is squared, and, since LRam 
and 1- LRam may be considered as the proportions of successes and failures 
in n independent Bernouilli trials with constant probabilities LPam and 
1- LPam, the variance of v'n L (Ram - Pam) or of v'n LRam is simply (LPam) 
(1- LPam). 

The second line of (A5.2) is the variance of the second term of v'n.:1; viz., 
v'n(l- LPamHR.m-P.m). It may be written down in the same manner as the 
first line. 

The third line of (A5.2) is minus twice the covariance of the two terms of 
v'n.:1. The constants afford no difficulty, but the quantity in square brackets, 
the covariance of v'n LRam and v'nR.m, may be troublesome to check. Note 
that, in general, if R I , R2, ... , Rk are multinomial proportions corresponding 
to the probabilities PI, P2, ... , Pk, then 

Cov(RI + R2, RI + Ra) = Var RI + Cov(RI, R2) + COV(RI, Ra) + Cov(R2, Ra) 

= n-I{PI(l - PI) - PIP2 - PIPa - P2pa} 

= n-l { PI - (PI + P2)(PI + pa) }. 

To apply this, take RI as the sum of those Ram's that also appear as summands 
of R.m, R2 as LRam-RI, and Ra as R.m-RI. We can therefore write down the 
third line above immediately. 

Simplifying the above expression for the variance of the asymptotic dis­
tribution of v'n.:1, we obtain 

(A5.3) 

Note that the last factor is just the sum of the Pam'S not summands in P'm, plus 
those summands in P.m that are not Pam'S. (A5.3) is zero if and only if >'b=O. 

Hence, as n--?oo, the distribution of vn(Lb->'b) will approach the normal 
distribution with mean zero and variance (3.1.3). This variance is zero if and 
only if >'b=O or 1. It is indeterminate if P.m=l, but in this case >'b itself is in­
determinate. Finally, if >'b~O or 1, it follows from Section A2 that (3.1.4) is 
asymptotically unit normal. 

We note that (3.1.3) could also be obtained by direct application of the 
delta method to the first line of (A5.1). We have that 

iJ (LRam - R.m) 1- LRam 
iJR.m 1 - R.m = - (1 - R.m)2 ' 

and 

iJ ( L Ram - R .m) 1 
iJ L Ram 1 - R.m = 1 - R.m 

Evaluating these derivatives for the population values, we obtain - (1- LPam) 
1(1-P.m)2 and 1/(1-P.m), respectively. If we then computed the quadratic 

125 



360 AMERICAN STATISTICAL ASSOCIATION JOURNAL, JUNE 1963 

form required by the delta method, and used the appropriate variances and 
covariances given a few paragraphs back, we would emerge with (3.1.3). These 
two paths to the same goal serve as mutual checks. 

A6. Asymptotic Behavior of L. Just as in Section A5, we write v'n(L-X) as 
one fraction and change the denominator to a function of the p's while at the 
same time multiplying by a quantity approaching unity in probability. Neglect­
ing this last quantity, as we may by Section A2, we deal with 

This quantity is asymptotically normal with zero mean and with a variance 
that is equal to the following divided by (2-P.m-Pm.)4: 

(2 - p.m - Pm.)2[ L: Pam(1 - L: Pam) + L: Pmb(l - L: Pmb) 

+ 2 L:* Pam - 2(L: Pam)(L: Pmb)] 

+ (2 - L: Pam - L: P".b)2[P.m(1 - P·m) + Pm.(l - Pm.) + 2p** - 2Pm.P.m] 

- 2(2 - p.m - Pm.) (2 - L: Pam - L: Pmb) [L:r Pam - p.m L: Pam + L:' Pmb (A6.2) 

- Pm· L: Pmb + p*m - Pm· L: Pam + Pm* - P·m L: Pmb], 

where the notation involving asterisks is defined in Section 3.4 in terms of 
sample R's. Simplifying (A6.2) we obtain the quantity (A6.3),17 

(2 - p.m - pm.)2[(L: Pam + L: Pmb) (1 - L: Pam - L: Pmb) + 2 L:* 2Pam] 

+ (2 - L: Pam - L: Pmb)2[(P.m + Pm.)(l - P·m - Pm.) + 2p**] (A6.3) 

- 2(2 - P·m - Pm.)(2 - L: Pam - L: Pmb)[ L:r Pam + L:" Pmb + P*m 

+ Pm* - (P.m + Pm.)(L: Pam + L: Pmb)]. 

If, for simplicity, we let 

T. = P·m + Pm., 

T:z = L: Pam + L: Pmb, 

T* = L:r Pam + L:' Pmb + P*m + Pm*, 

then (A6.3) is equal to both the following quantities: 

(2 - T.)2(T:z + 2 L:* Pam) + (2 - T:z)2(T. + 2p**) - 4(T:z - T.)2 

- 2(2 - T.)(2 - T:z)T* (A6.4a). 

(2 - T.)(2 - T:z)(T. + T:z + 4 - 2T*) - 2(2 - T.)2(1 - L:* Pam) 

-2(2 - T%)2(1 - P**). (A6.4b) 

11 Actually we could write (A6.3) directly by thc uee of general formulas such as that of Section Ali. For example 
it is easy to check that 
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The variance of the asymptotic normal distribution for vn(L - X) is either 
of the above divided by (2-T.)4. 

It follows from Section A2 that, provided (A6.4) is not zero, (3.4.3) is 
asymptotically unit normal. 

Finally, we show that (A6.4) is zero if and only if X = 0 or 1. We are con­
cerned with the variance of 

(2 - T.)U2; + (Tl: - 2)U., (A6.5) 

the random quantity in (A6.1). To say that this has zero variance is to say 
·that it is constant j we consider the various possible cases. 

(A):2 -T. =0. This says that P.m=Pm. = 1, or that there is only one non-zero 
Pab, and it equals unity. This degenerate case, in which X is not even defined, 
we have precluded by assumption. 

(B) : 2 - T2; = O. This says that LPam = LPmb = 1, or that each row and col­
umn has at most one non-zero pab. Then X=I, L=1 always, and U2;=2 always. 
Thus, in this special case, X = 1 and the variance of (A6.5) is zero. 
(C):2-T.~0, 2-Tl:~0. If neither coefficient of (A6.5) is zero, at least one 

row or column has two or more cells with non-zero Pab'S. Without loss of 
generality, suppose that pn and P12 are both non-zero. Then there is positive 
probability for each of the following n+ 1 sample points: Rll = kin, R12 = 
(n-k)ln (k=O, 1,' . " n). If k5.nI2, Ul:= U. = 1+ [(n-k)ln]; while if 
k"?nI2, U2;= U.=I+ [kin]. Hence, for such sample points, 

(A6.5) = (Tl: - T.)[1 + Max (k, n - k)ln], (k = 0, 1, ... , n). 

If (A6.5) is constant and n"?2, it follows that T2; =T., or X =0. 
Conversely, it is easy to see that if X=O, all the Pam'S must appear in the 

same column, and all the Pmb'S in the same row. Hence T.=T2;, T*=T.+2p**, 
and ~*Pam=P**=P*m=Pm*. Hence, substituting in (A6.4) , we obtain zero 
variance. 

A7. Asymptotic Behavior of G. As before, we simplify 

- - [ P. - P d II. - lId] vn(G - 'Y) = vn - ---
I - P, 1 - lIt 

by writing it as a single fraction, and then replacing the denominator by the 
quantity to which it converges in probability. This leaves us with 

(A7.1) 

as the quantity whose asymptotic distribution is desired. We assume that 
II,<1. By use of the delta method (Section A3), we see that vn[P.IId-PdII.] 
is asymptotically normal with zero mean and with a variance computed in the 
following manner. The random variable p., considered as a function of the 
Rab's, may be partially differentiated with respect to Rab as follows: 
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Unless (a, b) = (a, b) or (a', b' ) = (a, b), the summand is zero. (Both equalities 
cannot hold simultaneously.) Hence, we obtain 

(A7.2a) 

Similarly, 

(A7.2b) 

Evaluating these at Ra'b' = Pa'b', and changing (a, b) to (a, b) we obtain the 
differential coefficients 

2ffi!~) = [ ap. ] = 2 L L Pa'b' + 2 L L Pa'b', 
aRab Ra'b'-Pa'b' a'>a b'>b a'<a b'<b 

(A7.3) 
(d) [ aPd ] 

2<Rab = - = 2 L L Pa'b' + 2 L L Pa'b" 
aRab Ra'b'-Pa'b' a'>a b'<b a'<a b'>b 

Essentially these quantities appear in (3.5.6). 
Hence the derivative of PalId-PdlIa with respect to Rab, evaluated for the 

true Pa'b,'S, is 

[
(a) (d) 

2 lId ffiab - II. ffiab ], 

and the asymptotic variance of v'n [p .IId - P dlI.] is the same as the asymptotic 
variance of 

(A7.4) 

But this quantity is 

'" '" '" '" [(.) (d)] [(') (d) ] [ 4 £.... ~ £.... £.... IIdffiab - IIaffiab IId ffia'b' - II.ffia'b' Oab,a'b'Pab - PabPa'b']' (A7.5) 
a b a' bl 

where Oab,a'b' =0 unless (a, b) = (a', b' ), in which case it is unity. Now consider 
the eight terms of the above sum, obtained by multiplying out. The four terms 
that involve Oab,a'b' are 

'" '" (.) (d) - 4 £.... £.... II.IId<Rab ffiab Pab = - 4 IIaiidlIad (two of these), and 
a b 
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whereas the other terms sum to zero, for they are equal to 

4 { L L [I1d(R~;) - I1'~:)]P/Jb} 2 

/J b 

and 

Hence the asymptotic variance of vn [p .I1d - P dIl.] is 

2 2 
4[I1dIl .. - 2I1.I1~.d + I1,I1dd]. 

Finally, we must multiply this by the square of the constant coefficient in 
(A7.1) to obtain (3.5.5), the asymptotic variance of v1i(G-'Y). 

It is interesting to note that (3.5.5) reduces, in the continuous case, to 

{ 2 2 2 2} { 2} 16 I1.I1d - I1.I1.d - 2I1.I1dIl.d + I1dIl. - I1dII.d = 16 II .. - II., (A7.6) 

since, in this case, II, = 0, II. = II •• + II.d, IId = IIdd+ II.d, II. + IId = 1. Formula 
(A7.6) is, in fact, the asymptotic variance for vn(t-T), where t is Kendall's 
t (see [11], [24], [18 n. This is natural, since G, in the continuous case, is [18] 
essentially Kendall's t. 

We now turn to the bound on the asymptotic variance stated in Section 3.5. 
This quantity is also a bound on the actual (small-sample) variance of vn 
(G-'Y), at least for even-sized samples [4]. We shall prove here that (3.5.5) 
is less than or equal to the bound (3.5.9), 2(1-'Y2)/(1- II,); i.e., that 

Proof: Let 

Then 

if observations i and j are fully concordant. 

if observations i and j are fully discordant. 

otherwise. 

E{ Vii} = - IIdIl, + I1aIId = 0, 

Var{Vij} = II!I1. + II!I1d = II,I1iIld + II,) = II,IId(1 - II,), 

Cov { V ij, V ik} = II!II.. - 2II,IIdII,d + II!IIdd, 

for j ~ k. Since 

Var{2(V12 + V34) - (V13 + Va + Vu + Vu)} 

= 12 Var{V12 } - 24 Cov{V12, V 13 } ~ 0, 
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we have that 

II.IId(1 - II,) ~ 2 {II!II .. - 2II.IIdII.d + II:IIdd}' 

We also note that 

1 - 'Y2 = 1 - [(II. - IId)/(ii. + IId)]2 = 4II.IId/(1 - III)2. 

Thus, 

2 2 2 8 
IIdII .. - 2II,IIdII,d + IIdiidd ::; (1 - 'Y ) (1 - II,) /8. 

We conclude with some remarks on the meaning of the assumption that 
(3.5.5), the asymptotic variance, is not zero. It is clear from (A7.5) and the 
following lines that (3.5.5) = 0 if and only if 

(,) (d) 
lId <R,;b - II. ffiab = 0 

for all (a, b) such that Pab~O. Multiplying through by Pabffi~8~ or Pabffi~~ and 
summing, we find that, if (3.5.5) =0, then 

The converse is immediate. We may write these two statements as 

II .. /II. = II.d/IId, and IIdd/iid = II.d/II., 
providing that II. and lId are different from zero. From these we see that 
(3.5.5) is zero if and only if, taking three individuals, 1, 2, 3, from the popula­
tion at random, 

and 

{ land 3 have "positive" 
Pr 

sign relation 

{ land 3 have "positive" 
= Pr 

sign relation 

1 and 2 have "positive" } 

sign relation 

1 and 2 have "negative" } 

sign relation 

Pr {I and 3 have "negative" 11 and 2 have "negative" } 
sign relation sign relation 

= Pr {I and 3 have "negative" 11 and 2 have "Positive"} . 
sign relation sign relation 

We suggest that this is an unlikely state of affairs in most applications. For 
example, if the four corner cells of the cross classification have positive prob­
abilities (pu, PlP, Pal, PaP>O), then (3.5.5) must be positive. 
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MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS. IV: 

SIMPLIFICATION OF ASYMPTOTIC VARIANCES 

LEO A. GOODMAN and WILLIAM H. KRUSKAL * 

The aqmptotic sampling theory discussed in our 1963 arlie/e (3) for measures 
of association presented in earlier arlie/es [1, 2) turns on the derivation of 
aqmptotic variances that may be complex and tedious in specific cases. In the 
present arlie/e, we simplify and unify these derivations by exploiting the expres­
sion of measures of association as ratios. Comments on the use of aqmptotic 
variances, and on a trap in their calculation, are also given. 

1. INTRODUCTION AND SUMMARY 

In our 1963 article [3], we discussed asymptotic sam­
pling theory for some of the measures of association 
presented in our earlier articles ll, 2], It would have been 
impractical to present in [3] asymptotic results for many 
measures under many sampling methods, so we gave re­
sults only for some of the more important cases, together 
with general methods so that others might more readily 
do their own asymptotics. 

In the present article, we present a more unified way 
to derive asymptotic variances (which form the nub of 
the asymptotic theory) for the following two sampling 
methods: 

a. Multinomial sampling over the entire two-way cross 
classification; 

b. Independent multinomial sampling in the rows when 
total row proportions are known; that is, stratified sam­
pling in the rows. 
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We then apply this more unified view to several measures 
of association and obtain fresh formulas for asymptotic 
variances. Further to illustrate the method, we rederive a 
few of the asymptotic variances in [3]. We also take this 
opportunity to correct (4.4.3) of [3]. Use of the asymp­
totic variances in practice is also discussed, and finally 
we give a cautionary note about a trap when working out 
asymptotic variances. 

The basic notion of this article is to exploit the expres­
sion of most measures of association as ratios, and to do a 
portion of the manipulations towards asymptotic vari­
ances in advance. 

2. MULTINOMIAL SAMPLING OVER THE ENTIRE 
TWO-WAY CROSS CLASSIFICATION 

2.1. The General Case 

As before, let Poo be the probability for the a, b cell of 
the cross classification, and let Rab be the corresponding 
observed proportion. The ranges are a = 1, 2, ... , a and 
b = 1,2, ... , {3. The poo are unrestricted, except of course 
that they are non-negative and add to one. 

Nearly all the measures of association we presented in 
our earlier articles were written as ratios. We exploit that 
structure and consider a generic measure in the form 
t = II /8, where II and 8 are mnemonically chosen to stand 
for lIumerator and 8enominator; t is the generic measure 
of association, although it could be any ratio of two func­
tions, II and a, of the Poo's. (We assume that 8 ~O and 
that II and 8 are differentiable at the needed values of 
their arguments.) 

In this section we assume a multinomial sample of size 
n over the entire aX{3 cross classification, so that the 
Roo's are the maximum likelihood estimators of the Poo's. 
I t is well known that the covariance between vn(Roo - Pab) 
and vn(R"'b' - p,.'b') is 

K K 
8,.,.,8bb ,POO - Pa!>P,.'b', (2.1) 

where the 8K here is the Kronecker delta; the K super­
script is used to avoid confusion with the denominator 
delta above. 

The maximum likelihood estimators of t, II, and 8 are 
the same functions of the Roo's as t, II, and 8 are of the 
Poo'S; we call these Z, N, and D, respectively, so that 
Z =N /D, and our concern is with the variance of the 
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asymptotic normal distribution of v1i(Z - t). (See Sec­
tion 4 for comments on the possibility that D =0.) Let 
us define 

(2.2) 

since these partial derivatives enter frequently. It is con­
venient also to define 

, , 
cf>ab = IIOab - Ollab, 

iP = La.b Pabcf>ab. 
(2.3) 

Note that iP is a weighted average of the cf>ab'S. 

Then by applying the delta method and the supple­
mentary tools presented in [3], it is easily calculated that 
the asymptotic variance of v1i(Z - t) is 

1 
q2 = 84" L .. ,b Pab( cf>ab - iP) 2 

(2.4) 

This is a simple general form for the asymptotic variance. 
We proceed to three examples, the first a reprise from [3] 
and the second two new. 

2.2. The Measure of Association Gamma 

In [1] we discussed a measure of association called 'Y 

that might be appropriate when both polytomies of the 
cross classification are ordered. For convenience we re­
capitulate the definition of 'Y; its interpretation is given 
in [1]. In the present setting, 'Y is most readily defined by 
a short chain of definitions, 

II = II. - IId , o = II. + IId, 

II. = 2 La.b PabIII;ab, IId = 2 La.b pabII1V;ab, (2.5) 

The Roman numeral subscripts are mnemonics for the 
"quadrants" relative to (a, b). (Quadrants here refer to 
the conventional Cartesian system with a'-a correspond­
ing to the horizontal axis and b' -b to the vertical.) 

To calculate the derivatives it helps to look at an ex­
ample: what is the derivative of II. with respect to P22? 

Think of II. as two times 
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Then one term of the derivative comes from the fourth 
summand above: 2III;22. Another term comes from the 
first summand: 2pn. No other summands contribute 
terms, and hence the desired derivative is 2(III;22+pn). 
In general, the derivative of II. with respect to Pab is 
2(III;ab+IIlII;ab), where 

in accord with our mnemonic. 1 Similarly, the derivative 
of lId with respect to Pab is 2(IIIV;ab+ IIu ;ab), and hence 

, 
Jlab = 2(III;ab - IIII;ab + IIIII;ab - IIIV;ab), 

c5:W = 2(III;ab + IIII;ab + IIIII;ab + IIIV;ab). 

In terms of the notation of A7 of [3, p. 362], 

, e.) (d) 
Jlab = 2( CRab - CRab ), c5:W = 2(~) + ~\ 

Thus the general expression of (2.3) becomes 

(.) (d) 
cJ>ab = 2(II. - IId)( <Roo + <Roo ) 

(.) (d) 

- 2(II. + IId)( CRab - CRab ) 

(d) ('J] = 4 [II. <Roo - lId CRab , 
(2.6) 

since :E Pabm.:: = lId and :E PabCR:g = II •. 
Hence, if G is the sample analog of 'Y, the asymptotic 

variance of vn(G-'Y) is 

16 (d) (')]2 

)
4 La ,b Pab [II, <Roo - lId CRab ' 

(II. + lId 
(2.7) 

Except for minor notational differences, and the carrying 
out of the square, (2.7) is the same as (3.5.5) of [3]. (To 
see the equivalence, note that II. + lId = 1-II" and refer 
to the manipulations at the bottom of p. 362 of [3].) For 
some purposes the present form may be simpler than the 
form in [3]. 

lOne might at first be concerned that these calculations of derivatives do not take 
into account that the sum of all the Pal> is one. That does not, however, introduce 
any difficulty 80 long as we use the correct covariance structure, which necessarily 
reflects linear restrictione like La.b Pob= I, or its I!8mple analogue La,b Rab= 1. There 
is a related possible difficulty, however, that is discussed in Section 6. 
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2.3. Somers' Asymmetrical L4. 

Somers [5] has introduced an asymmetrical modifica­
tion2 of 'Y, 

(2.8) 

together with its mate 6 ab, with the denominator replaced 
by 1- L P~b' (Following our past convention, a dot re­
placing a subsubscript means summation over the re­
placed subscript, e.g., Pa. = Lb Pab). The denominator of 
6 ba is the probability that two independently chosen units 
from a population governed by the {Pab} cross classifica­
tion probabilities do not lie in the same row (are not 
tied in a). 

An interpretation of 6 ba may be given in terms of two 
such independently chosen units; let us call their (ran­
dom) row and column numbers (a, b) and (a', b'), respec­
tively, and say that the units are weakly concordant when 
(a-a')(b-b') ~O, i.e., when the order of the two columns 
is the same as that of the two rows or when there is a tie. 
Similarly we may define weak discordance as (a-a') 
. (b-b') ~O. Then the conditional probability of weak 
concordance, given that there is a difference between the 
rows, is [II8 + Lb P~b- La.b p!bJ![l- La p!.], and the 
conditional probability of weak discordance, given a,=a', 
is [IId+ Lb P~b- La.b P~J! [1- La P;.]. Hence 6 ba is the 
difference between these two conditional probabilities. 

It is sometimes useful to write the denominator of 6ba 
in the form II8 +IId + La.b Pab(p.b-Pab), where the third 
summand, which is equal to Lb lb- La.b P;b, may be 
thought of as the probability that two independent ran­
dom units are tied in column but not in row. 

Some important properties of 6 ba are: 

1. <lb. is indeterminate if and only if the population is con­
centrated in a single row; 

2. <lb. is 1 if and only if both lId and 2: •. b P.b(P·b - P.b) are 
zero. The second condition says that each column has at 
most one non-zero cell: hence, after removing all-zero 
columns, <lba is 1 if and only if the non-zero cells descend 
in staircase fashion, perhaps with tn~lj.ds of unequal width. 
A similar interpretation holds for <lba = -1; 

3. <lba is 0 in the case of independence, but the converse need 
not hold except in the 2 X2 case. 

, Somers used the symbol d b •. We have changed this to ~ ba in order to use db. for 
t he sample analogue. 
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The numerator II is the same for ~ba as for 'Y, and the 
denominator 8 is 1- E p! .. Hence II~ is the same as for 'Y 
and, more simply, 8~ = - 2Pa .. It follows that 

(I) (d) 
tPoo = - 2pa. 1I - 28( (Roo - (Roo ), 

if> = - 211 Ea p!. - 28(II. - lId) = - 211, 
(2.9) 

and that 

(B) (d) 

tPab - if> = 211(1 - Pa.) - 28( (Roo - (Roo). (2.10) 

Letting dba denote the sample analogue to ~ba, the desired 
asymptotic variance for v'n(dba-~a) is, therefore, 

4 (.) (d) 2 

~ Ea.b POO[II(l - Pa.) - 8( (Roo - (Roo )]. (2.11) 

So far as we know, this result is newly published. 

2.4. The Measure of Association Tb 

In [1] we presented an asymmetrical measure of asso­
ciation, Tb, based on a notion-suggested to us by W. A. 
Wallis-of reconstructing as best one can the cross classi­
fication probabilities. Interpretative details are given in 
Section 9 of [1]. In the present setting, it is easier to work 
with 1-Tb (which will not affect the asymptotic variance) 
and to express 1-Tb in terms of its numerator and de­
nominator, 

The maximum likelihood estimator of 1-Tb is 

1 - Ea.b (R~/Ra.) 
1 - tb = -------- , 

1 - EbR~b 

and we want to find the asymptotic variance of v'n(tb-Tb), 
which is the same as that of v'n [(1- tb) - (l-Tb)]. Follow­
ing our general prescription, we find 
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where OK is the Kronecker delta. Thus 

l/>alJ = - 2Vp.b + 20Pab/Pa' - 0 Lb' (P!b'/P!,), 

Cf> = - 2v Lb /b + 0 La.b (P!b/ Pa.) 

= - 2v(1 - 0) + 0(1 - v) 

= - 2v + vo + 0 

= (1 + v - 2Tb)O 

= [ La.b (p~/ Pa.)][ 1 + Lb /b] - 2 Lb p\. 

(2.13) 

(We have expressed Cf> in several different ways for con­
venience of reference.) Hence the asymptotic variance of 
vn(tb-Tb) under full aX/3 multinomial sampling is 

1 
b4 La.b PalJ(l/>alJ - Cf»2, (2.14) 

where o,l/>alJ, and Cf> are defined above. 
This result is new; we did not discuss the distribution of 

tb under full multinomial sampling in [3]. 

3. INDEPENDENT MULTINOMIAL SAMPLING 
IN THE ROWS 

3.1. The General Case 

In Section 4 of [3] we dealt with a stratified sampling 
method that may sometimes arise. In this method there 
are separate, independent multinomial samples within 
each row of the cross classification; further, the sample 
size in row a is na. =nwa, where the wa's are supposed 
known, positive, and summing to one. (In practice, nWa 
will not in general be an integer, so one would take na. as 
that integer closest to nWa. For purposes of asymptotic 
theory, we need only assume that the na./(nwa) have the 
limit one as n grows large.) We also assume that the Pa.'S 
are known and positive. 

To be specific, we treat separate sampling within rows; 
if there is separate sampling within columns, one need 
only interchange the roles of rows and columns. The 
sampling method under discussion may arise either from 
stratification of a single population, or in comparing sev­
eral different populations. 

If Wa=Pa., that is if na· is proportional to pa., matters 
simplify a bit because then Rab is still the maximum likeli-
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hood estimator of pab, just as in the case of full multi­
nomial sampling. It was for this reason that we restricted 
ourselves in [3] to the proportional sampling rate case. 
The general case, however, is not essentially harder-it 
requires only carrying multiplicative factors along-and, 
to save space, we deal with it directly. (This remark quali­
fies a possibly misleading statement in the last paragraph 
of Section 4.4 of [3].) 

It is convenient to deal with conditional row proba­
bilities, and accordingly we write 

for all relevant values of a and b. (For asymptotic pur­
poses, there is no problem about the positiveness of Ra ., 

since we have assumed wa>O and na. is within 1 of nwa, 
but there may be a problem with zero Ra. for small finite 
sample sizes.) 

The maximum likelihood estimator of Pab is clearly 
Rab ; hence that of Pab is (p"./Ra.)Rab, which is almost 
(p".jwtJ)Rab. Further, the covariance between yn(Rab - Pab) 
and yn( R"'b' - Pa'b') is readily seen to be 

1 K K 
-8tJ",[8w Pab - PabPab']' (3.1) 
"'tJ 

Note the l/w" factor, and the first Kronecker delta outside 
the brackets, because of independence among the multi­
nomials. 

As before, we let t = 11/8 be a generic measure of associa­
tion, but now we regard r, 11, and 8 as functions of the 
Pab'S (and, of course, of the known Pa.'S). Then Z, N, D 
(Z = N / D) are the corresponding sample quantities, ob­
tained by replacing Pab with Rab to obtain maximum likeli­
hood estimators. The Pa.'S stay unchanged since they are 
known constants. 

Next, let lI:b and 8:b be the partial derivatives of II and 
8, respectively, with respect to Pab. We use asterisks in­
stead of primes to avoid confusion about the argument of 
differentiation. (Nonetheless, we record the relationships 
.v:b=Pa.V~ and 8!=Pa.8~.) 

As in Section 2, we introduce 

+ * * tPab = 118ab - 811ab, (3.2) 

where q,: is a weighted average of the tPdb'S in row a only. 
(Some symbolic distinction from the notation of (2.3) is 
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necessary, and the + superscript is suggestive of fixed 
row marginals.) The methods of [3] then show easily 
that the asymptotic variance of vn(Z-r) is 

1 1 + + 2 
-; L .. - Lb Pab(cPab - $ .. ) 
a w .. 

1 1 +2 _-'-2 
= -; La - [ Lb PabcPab - cPa ]. 

a Wa 

(3.3) 

In short, we obtain here a linear combination of the 
within-row variabilities of the cP;t,'s (weighted by the 
Pab's) , rather than the overall variability obtained in 
Section 2. 

This is a simple general form for the asymptotic vari­
ance under independent sampling within rows. We illus­
trate it next with two examples, the first a generalization 
of Section 4.2 of [3], and the second a generalization and 
correction of formula (4.4.3) in [3}. 

3.2. The Measure of Association Ab 

In [1], we presented an asymmetrical measure of asso­
ciation, Ab, based on the concept of optimal prediction. 
Interpretative details are given in Section .1.1 of [1}. In 
the present setting, it is easier to work with 1- Ab (which 
will not affect the asymptotic variance) and to express 
1- Ab in terms of its numerator and denominator, 

a = 1 - p."., (3.4) 

where pam is the maximum of pal, ••. , Path and p.". is the 
maximum of P.l, •.. , p.{J. We shall assume, as in [3] 
(see Sec. 3.1 there), that pam equals exactly one of the pab, 
say Pab(G) , and that p.m equals exactly one of the P.b, say 
p.b(.) (b=1, .. " (3). (Note about symbolism: In [3) we 
used pa('m) for what is called Pab(-) here, where b(.) is the 
value of the column subscript index maximizing P'l, 
... , p.p; and we did not in [3} need a symbol for what 

we now call b(a), the value of the column subscript index 
maximizing Pal, .•• , PaP.) 

The maximum likelihood estimator of 1-Ab is 

and we want to find the asymptotic variance of 
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"\/n(Lb-~)' which is the same as that of v'n[(I-~) 
- (1- Xb) ]. To follow our general prescription,3 first write 

8 = 1 - Max :E" (p".Pab). (3.5) 
b 

Recalling that the p".'s are fixed, we differentiate with 
respect to Pab to find 

* K * K 
"ab = - p". 8bb(al' 8ab = - p".8bb(.). 

A schematic sketch of the cross classification will aid in 
seeing why these are the derivatives. It follows that 

+ K K 
CPab = - "p".8bb(.) + 8p".8bb(a), 

+ q,,, = 8Pab(ll) - "P4b(.)· 
(3.6) 

Hence the asymptotic variance of v'n(Lb-~) under inde­
pendent sampling within rows is, from the second form 
of (3.3), 

2 2 K} +2 + "p".8bb(.) - q,,, J 

1 
= "'i4 {82 :E" (lIlP4b(Il)(1 - P4b(Il») (3.7) 

- 28,,[ :Er «(laP4b(Il») - :Ea 8aPab(Il)P4b(.)] 

+ ,,2 :Ea (I"Pab(.)(1 - Pab(.»)} , 

where (I" = pa. / "''' and :Er denotes summation over those 
values of a for which b(,,) =b(.). (This summation usage 
had been used in [3].) 

The quantity in curly brackets to the right of the equal­
ity sign in (3.7) is, when all 8" = 1, exactly the same as 
(4.2.6) of [3], except for notation changes. Although these 
expressions appear rebarbative, they are often not diffi­
cult to use in specific cases j we illustt:ated the use of the 
sample analogue of (3.7) in Section 3.2 of [3]. 

• It might be feared that differentiation will lead to difficulty here because the 
maximum function i. not everywhere differentiable. This problem i. discussed in 
Sections A4 and A5 of [3 J; there is no difficulty with the asymptotic theory under 
our assumptions. 
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3.3 The Measures of Association Tb 

We return to Tb of Section 2.4, but now under inde­
pendent sampling in the rows. It is convenient to work 
with 1-Tb and to express it as 11/0, where 

II = 1 - La.b Pa.p~, 
The maximum likelihood estimator of 1-Tb given in Sec­
tion 2.4 should have Ra. replaced by pa., since the Pa.'s 
are known. Hence the estimator now is 

Following our general prescription, 

* lIab = - 2pa·Pab = - 2pab, 

so that 

cp~ = 2Pa. [0 Lb p~ - II Lb P'bPab]. 
(3.9) 

It is helpful to let 1{;ab = OPab - IIp.b, so that 

where II: = Lb Pab1{;;;;. In these terms, the desired asymp­
totic variance for independent sampling in rows is 

4 + _+ 2 

- La.b 8aPab(1{;ab - 1{;a) . 
04 

(3.10) 

When the sample sizes by rows are proportional to the 
Pa.'S, i.e., when Wa=Pa. so that all 8a=1, then (3.10) with 
"8a" deleted gives the asymptotic variance. Formula 
(4.4.3) of [3] purported to give that asymptotic variance, 
but in error; the second term of (4.4.3) of [3] is wrong. 

4. USE OF THESE RESULTS IN PRACTICE 

Probably the most common use of these results in 
practice (see Section 3.2 of [3]) is to treat v"n(Z-~)/{T 
as approximately unit-normal, where {T2 is a consistent 
estimator of the asymptotic variance (J2. In the setting 
of our sequence of articles, {T2 is readily taken as the maxi­
mum likelihood estimator of (J2, as follows. 

Any (J2 is a function of the Pab'S, which may for conve­
nience be written, perhaps in part, in terms of the Pab'S. 
To find the maximum likelihood estimator of (J2, make the 
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replacements in the arguments of 1T2 as listed below. Recall 
that Rab = N ab/ n, the proportion of all observations in the 
(a, b) cell, and that Rab=Nab/na" the proportion of ob­
servations in the (a, b) cell relative to row a. 

Full multinomial sampling. (Sec. 2) 

pab -,) Rab . 

Independent sampling in rows. (Sec. 3) 

Pab -,)Rab(Pa./Wa) = Rabf)a = RabPa. 

In practice, It may be zero; we discuss this problem in 
[3], e.g., in connection with 'Yon p. 324 of [3]. Provided 
that IT> 0, however, the probability that It = 0 approaches 
zero as n grows, so for large enough samples the It = 0 
problem disappears. We have no analytic information 
about what "large enough" means, but we have encourag­
ing evidence from the simulations reported in [3] and 
those of Rosenthal [4]. In the next section we consider 
the meaning of IT =0 for the measures of association de­
scribed earlier. 

It can also happen in practice that D =0, and then Z 
is undefined. This problem was discussed in [3, p. 320] 
for the case of Ab. Since we assume throughout that 0 ;;eo, 
and since D converges to 0 in probability, the D = 0 prob­
lem also vanishes as n gets large. 

5. WHEN DOES O'=o? 

5.1. Full Multinomial Sampling 

From (2.4), it is clear that, under full multinomial 
sampling, 0'=0 if and only if Pab(t/>ab-(f» =0 for all a, b. 
What does this mean for the examples of Section 2? 

Gamma. Criteria for 0' = 0 in the case of G under full 
multinomial sampling were discussed in Section A7 of [3]. 
The basic condition given there may be rewritten, if 
lId> 0, as follows; 

If two individuals, 1 and 2, are drawn independently at 
random from the population, then, whenever Pab >0, 

Prl2 is concordant with 1 I 1 in (a, b) cell} 

Pr{2 is discordant with 1 11 in (a, b) cell} 

does not depend on the choice of (a, b), except that both 
numerator and denominator may be zero for some (a, b). 

By interchanging numerator and denominator, a similar 
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condition may be written under the assumption II.>O. 
By our general assumption, both II. and IId cannot be O. 

If either II. or IId is 0 (i.e., 'Y=±1), then 0"=0. If at 
least one corner cell has positive probability, this be­
comes an equivalence: 0" = 0 if and only if 'Y = ± 1. 

A family of cross classifications for which 0" = 0 is the 
balanced cruciform family: all the probability is in a 
single row and column (neither of them borders), and 
there is equal probability in the two horizontal arms of 
the "cross" as well as equal probability in the two vertical 
limbs. A specific numerical example is 

.1 

.2 .4 .1 .1 

.05 --1--------

.05 

where cells without numbers have zero probabilities. In 
such a balanced cruciform case, II. = IId so 'Y = 0, and 
m~ = m: for every cell with Pab>O. 

There are, however, other cross classifications with 
0" =0, but for which 'Y is not -1, 0, or 1. All appear to be 
very special. For example, consider the 4X4 case in which 
there is probability 0.25 in cells (1,2), (2,1), (3,4), and 
(4,3); other cells have, of course, zero probability. Here 
II. = .5, IId = .25 so that 'Y = 1/3, yet it is easy to check 
that 0" = 0 because the concordance-discordance ratio is 2 
for the four cells with positive probability. 

The measure ~a. A necessary and sufficient condition 
that 0" =0 here is that, for all cells with Pab>O, 

(.) (d) 
ffiab - ffiab = .1ba(1 - Pa.). 

We do not have a neat characterization of these cases. 
The measure Tb. This was not discussed in [3] for full 

multinomial sampling. The major finding here is that if 
all Pab > 0, then 0" = 0 if and only if independence holds, 
i.e., if and only if Pab=Pa'P-b for all (a, b). (Note that this 
implies Tb=O.) 

To see this, assume that all Pab>O, so that to say 0"=0 
is to say (see (2.13» that for all a, bl , b2 

o = rf>abl - rf>ab2 = - 2V(P'bl - p.b2) + 28(Pabl - Pab2)' 
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Hence, taking the difference of this quantity between 
rows at and il2, 

Finally, add over b2 and recall that Pa. = 1. It follows that 
Palbl = Pa.pll or that Palbl = Pal' Pa.pl' Now average both sides 
over a2 to obtain Palbl as a product of a factor depending 
only on at and another depending only on bt . This shows 
independence. Conversely, if Pab = Pa.p.b for all a, b, sub­
stitution shows immediately that a = II and that all 
q,ab=O. 

If some Pab'S are 0, we do not know a nice way to char­
acterize (1 = O. 

5.2. Independent Sampling in Rows 

Here (1=0 if and only if Pab(q,db-iP;i) =0 for all a, b. 
What does this mean for the examples of Section 3? 

The measure Ab. In 13, p. 315] we asserted that for ~, 
(1=0 if and only if ~=O or 1, but we did not there give a 
proof. In our current notation and approach, a proof may 
be given relatively easily. We assume, without loss of 
generality, that all pa. >0; if pa. =0, just delete that row. 

Recall first that 

Ab = 0 means Pab(G) = Pab(.), for all a, Qr, 

equivalently, ~) pa· = L Pa" 

Ab = 1 means L Pam = L PaL(G) = 1. 

Now suppose that (1=0, i.e., that Pab(q,d,,-iP;1') =0 for all 
a, b. In row a, look at the a, b(a) cell, for which Pab(G) must 
be positive. Thus, for all a, 

+ + K 
q,ab(G) - iPa = a(Pa. - Pab(a» - II(Pa.ab(G)b(.) - Pab(.» = O. 

Next, add over a, to obtain all- ( L r Pa. - P.m)1I = O. 
Hence, either 11=0 (whence 1 = L Pam and ~ = 1) or else 

1 - P'm. - L r Pa· + P·m = 1 - L r Pa. = O. 

If 1 = Lr Pa" then Er Pa· = EPa., Pab(G) =Pab(.) for all a, 
and ~=O. 

Conversely, if ~=1, 1-~=0, 11=0, and Pt!.'-Pab(G) =0. 
Hence q,d,,(G) -iP: =0. Similarly, if ~ =0, 1-~ = 1, a = II, 
and a~G)lJ(.) = 1 for all a. Hence 

+ + [ ] q,ab(S) - iPa = a Pa· - Pab(s) - Pt!.· + Pab(.) = O. 

This completes the proof. 
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Association for Cross Classifications: Asymptotic Variances 

The measure.,.". As in Section 5.1, the result here is that 
if all Pall> 0, Q' = 0 if and only if independence holds. The 
argument from independence to Q' = 0 is immediate; in the 
other direction, if all Pall> 0 and Q' = 0, then 

+ + 
i<<PalIl - <Palls) = 6(palIl - PalIl) - "(P·bl - p.b2) = 0 

for all a, bl , b2• The corresponding demonstration in Sec­
tion 5.1 then applies. 

6. CAUTIONARY NOTE ABOUT ASYMPTOTIC 
VARIANCES 

In working out asymptotic variances of the above 
kind, there is a trap that stems from the singularity of the 
distributions, i.e., from relationships like L ... b Pall = 1 or 
Lb Pall = Pa .. (See Footnote 1.) Because of these relation­

ships, a given function of the Pall'S may be expressed in a 
variety of ways, and sometimes one way is more conve­
nient than another. Which wayan expression is written 
makes no difference (except for convenience of computa­
tion) in the final asymptotic variance, provided that the 
same symbolic functional form is used throughout in find­
ing derivatives. If not, incorrect results may be obtained. 

We illustrate with a very simple case. Suppose that 
(Xl .. , XIn) form a sequence of pairs of random variables 
(n=l, 2, 3, ... ) such that Xl .. +XIn=O, and such that 
the pair (Vn(X l,,-2), vn(X2 .. +2» has in the limit as n 
becomes large the (singular) bivariate normal distribution 
with means zero, variances 1, and covariance -1. 

Note that we are treating the singularity consistently: 
first, 2+(-2) =0; second, the asymptotic variance of 
Vn[(Xl,,-2) + (X2 .. +2) ], which should be zero, is indeed 
1-2+1=0. 

Now let the function of interest be Y" = X~ ... Its deriva.­
tive with respect to Xl" (evaluated at Xl" =2) is 2X2=4; 
the corresponding derivative with respect to X 2" is zero. 
Hence the asymptotic variance of Vn(Y,,-4) is 
16( = (4)2X 1). 

But the function might just as well have been written 
Y .. = X~ ... The evaluated derivatives with respect to Xl .. , 
XI", respectively, are 0 and -4. Hence the asymptotic 
variance of Vn(Y,,-4) is again 16. 

A more interesting way of writing the function for 
illustrative purposes is Y,,=lX~ .. +IX~. The evaluated 
derivatives now are (i)(2) =4/3 and (t)( -2) = -8/3, 
respectively. Hence the asymptotic variance is 
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as before. Thus, no matter how we choose to write the 
function, we get the same asymptotic variance, provided 
we remain faithful to the same symbolic form during the 
differentiation process. 

If, however, we do not remain with one symbolic form, 
incorrect results may occur. In the above example, 
suppose that we write the function as X~n before getting 
the Xln derivative, and as X~n before getting the X2ft 

derivative. Both evaluated derivatives will then be zero, 
and we will obtain the grossly wrong asymptotic variance 
of 0, instead of the foursquare correct value of 16. 
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