
## **Espectros**

Autor: Patricia Abdel Rahim



Debe incluir todos los procedimientos

Para el desarrollo de este laboratorio se debe tener mucha paciencia y tiempo debido a que si desea observar el espectro de algún gas se debe dejar que el programa corra por algún tiempo.

Se deben agregar para cada ítem pantallazos que verifique el desarrollo de cada ejercicio

### **Objetivo**

Determinación de los niveles de energía de 4 gases.

#### Introducción

1. Entrar a la página

https://phet.colorado.edu/en/simulation/legacy/discharge-lamps [3]

2. En esta simulación observará los espectros de emisión y el diagrama de niveles de energía de los átomos de hidrógeno, mercurio, sodio y neón. Además puede variar el número de átomos del gas entre uno y muchos y el valor del voltaje entre -30 V y 30 V.

#### Marco teórico

Consulte sobre la serie de Balmer, Lyman, Paschen, Brackett y Pfund, note el espectro de emisión correspondiente a los átomos de hidrógeno, mercurio, sodio y neón y consulte sobre la constante de Planck.

#### **Procedimiento**

### **Ejercicio 1:**

Construya el diagrama de niveles de energía para el átomo de hidrógeno, mercurio, neón y sodio. [1].

Desarrollaremos un ejemplo de cómo se debe entregar el ejercicio. Si la energía total del átomo de hidrogenoide de acuerdo a los cuatro postulados de Bhor.

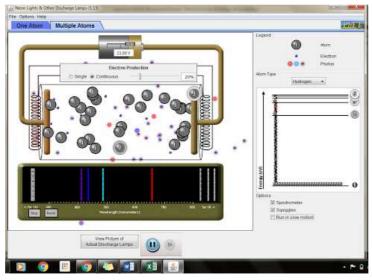
$$E_n = -13.6 \frac{Z^2}{n^2} eV$$

$$n = 1,2,3,4,5 \dots \dots \dots$$

Donde Z corresponde al número atómico.

Los valores de energía en eV y J.

$$\begin{split} E_1 &= -13,6eV = -8,5 \times 10^{-19} J \\ E_2 &= -13,6\frac{1^2}{2^2}eV = -3,4eV = -5,44 \times 10^{-19} J \\ E_3 &= -13,6\frac{1^2}{3^2}eV = -1,51eV = -2,41 \times 10^{-19} J \\ E_4 &= -13,6\frac{1^2}{4^2}eV = -0,85eV = -1,36 \times 10^{-19} J \\ E_5 &= -13,6\frac{1^2}{5^2}eV = -0,54eV = -0,86 \times 10^{-19} J \\ E_6 &= -13,6\frac{1^2}{6^2}eV = -0,37eV = -0,59 \times 10^{-19} J \end{split}$$


Diagrama de nivel de energía sería igual a

n = 5 ..... -0.54eV n = 4 ..... -0.85eV n = 3 .... -1.51eV n = 2 .... -3.4eV ....

# Ejercicio 2.

Halle longitudes de onda y la energía para cada color que conforma el espectro de los átomos de hidrógeno, mercurio, neón y sodio. Realice esta tabla para cada uno

| Color   | Longitud de onda | Energía [J]              | Energía [eV]             |
|---------|------------------|--------------------------|--------------------------|
|         | λ [nm]           | $E = \frac{hc}{\lambda}$ | $E = \frac{hc}{\lambda}$ |
| Violeta |                  |                          |                          |
| Azul    |                  |                          |                          |
| Cyan    |                  |                          |                          |
| Rojo    |                  |                          |                          |



**Ejercicio 3:** Para el espectro del hidrógeno, complete la Tabla

| Color   | Valor teórico | Valor experimental | Error Relativo λ |
|---------|---------------|--------------------|------------------|
|         | λ [nm]        | λ [nm]             | %                |
| Violeta | 397,0072      |                    |                  |
| Azul    | 434,047       |                    |                  |
| Cyan    | 486,133       |                    |                  |
| Rojo    | 656,2852      |                    |                  |

## Ejercicio 4

¿Hay diferencias entre los diagramas de niveles de energía para los 4 gases? Explique.

## Ejercicio 5

Por qué son diferentes los espectros de los distintos elementos.

Indique sus conclusiones, sugerencias y bibliografía.

# Bibliografía

[1]http://www.monografias.com/trabajos84/espectro-atomico-lineas/espectro-atomico-lineas.shtml

[2]http://www.batanga.com/curiosidades/6041/10-curiosidades-sobre-max-planck-el-fundador-de-la-teoria-cuantica

[3] Author the Applet: PhEt-University of Colorado Boulder